No Arabic abstract
To exploit a given physical system for quantum information processing, it is critical to understand the different types of noise affecting quantum control. Distinguishing coherent and incoherent errors is extremely useful as they can be reduced in different ways. Coherent errors are generally easier to reduce at the hardware level, e.g. by improving calibration, whereas some sources of incoherent errors, e.g. T2* processes, can be reduced by engineering robust pulses. In this work, we illustrate how purity benchmarking and randomized benchmarking can be used together to distinguish between coherent and incoherent errors and to quantify the reduction in both of them due to using optimal control pulses and accounting for the transfer function in an electron spin resonance system. We also prove that purity benchmarking provides bounds on the optimal fidelity and diamond norm that can be achieved by correcting the coherent errors through improving calibration.
Decoherence largely limits the physical realization of qubits and its mitigation is critical to quantum science. Here, we construct a robust qubit embedded in a decoherence-protected subspace, obtained by hybridizing an applied microwave drive with the ground-state electron spin of a silicon carbide divacancy defect. The qubit is protected from magnetic, electric, and temperature fluctuations, which account for nearly all relevant decoherence channels in the solid state. This culminates in an increase of the qubits inhomogeneous dephasing time by over four orders of magnitude (to > 22 milliseconds), while its Hahn-echo coherence time approaches 64 milliseconds. Requiring few key platform-independent components, this result suggests that substantial coherence improvements can be achieved in a wide selection of quantum architectures.
Full quantum state tomography is used to characterize the state of an ensemble based qubit implemented through two hyperfine levels in Pr3+ ions, doped into a Y2SiO5 crystal. We experimentally verify that single-qubit rotation errors due to inhomogeneities of the ensemble can be suppressed using the Roos-Moelmer dark state scheme. Fidelities above >90%, presumably limited by excited state decoherence, were achieved. Although not explicitly taken care of in the Roos-Moelmer scheme, it appears that also decoherence due to inhomogeneous broadening on the hyperfine transition is largely suppressed.
We present an example of quantum process tomography performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the $chi$ matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted.
Quantum optimal control can play a crucial role to realize a set of universal quantum logic gates with error rates below the threshold required for fault-tolerance. Open-loop quantum optimal control relies on accurate modeling of the quantum system under control, and does not scale efficiently with system size. These problems can be avoided in closed-loop quantum optimal control, which utilizes feedback from the system to improve control fidelity. In this paper, two gradient-based closed-loop quantum optimal control algorithms, the hybrid quantum-classical approach (HQCA) described in [Phys. Rev. Lett. 118, 150503 (2017)] and the finite-difference (FD) method, are experimentally investigated and compared to the open-loop quantum optimal control utilizing the gradient ascent method. We employ a solid-state ensemble of coupled electron-nuclear spins serving as a two-qubit system. Specific single-qubit and two-qubit state preparation gates are optimized using the closed-loop and open-loop methods. The experimental results demonstrate the implemented closed-loop quantum control outperforms the open-loop control in our system. Furthermore, simulations reveal that HQCA is more robust than the FD method to gradient noise which originates from measurement noise in this experimental setting. On the other hand, the FD method is more robust to control field distortions coming from non-ideal hardware
We present an example of quantum process tomography (QPT) performed on a single solid state qubit. The qubit used is two energy levels of the triplet state in the Nitrogen-Vacancy defect in Diamond. Quantum process tomography is applied to a qubit which has been allowed to decohere for three different time periods. In each case the process is found in terms of the chi matrix representation and the affine map representation. The discrepancy between experimentally estimated process and the closest physically valid process is noted. The results of QPT performed after three different decoherence times are used to find the error generators, or Lindblad operators, for the system, using the technique introduced by Boulant et al. [N. Boulant, T.F. Havel, M.A. Pravia and D.G. Cory, Phys. Rev. A 67, 042322 (2003)].