Self-Gravitational Force Calculation of Infinitesimally Thin Gaseous Disks on Nested Grids


Abstract in English

We extend the work of Yen et al. (2012) and develop 2nd order formulae to accommodate a nested grid discretization for the direct self-gravitational force calculation for infinitesimally thin gaseous disks. This approach uses a two-dimensional kernel derived for infinitesimally thin disks and is free of artificial boundary conditions. The self-gravitational force calculation is presented in generalized convolution forms for a nested grid configuration. A numerical technique derived from a fast Fourier transform is employed to reduce the computational complexity to be nearly linear. By comparing with analytic potential-density pairs associated with the generalized Maclaurin disks, the extended approach is verified to be of second order accuracy using numerical simulations. The proposed method is accurate, computationally fast and has the potential to be applied to the studies of planetary migration and the gaseous morphology of disk galaxies.

Download