Do you want to publish a course? Click here

Optical Emission Line Nebulae in Galaxy Cluster Cores 1: The Morphological, Kinematic and Spectral Properties of the Sample

68   0   0.0 ( 0 )
 Added by Stephen Hamer
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an Integral Field Unit survey of 73 galaxy clusters and groups with the VIsible Multi Object Spectrograph (VIMOS) on VLT. We exploit the data to determine the H$alpha$ gas dynamics on kpc-scales to study the feedback processes occurring within the dense cluster cores. We determine the kinematic state of the ionised gas and show that the majority of systems ($sim$ 2/3) have relatively ordered velocity fields on kpc scales that are similar to the kinematics of rotating discs and are decoupled from the stellar kinematics of the Brightest Cluster Galaxy. The majority of the H$alpha$ flux ($>$ 50%) is typically associated with these ordered kinematics and most systems show relatively simple morphologies suggesting they have not been disturbed by a recent merger or interaction. Approximately 20% of the sample (13/73) have disturbed morphologies which can typically be attributed to AGN activity disrupting the gas. Only one system shows any evidence of an interaction with another cluster member. A spectral analysis of the gas suggests that the ionisation of the gas within cluster cores is dominated by non stellar processes, possibly originating from the intracluster medium itself.



rate research

Read More

We present basic properties of $sim$3,300 emission line galaxies detected by the FastSound survey, which are mostly H$alpha$ emitters at $z sim$ 1.2-1.5 in the total area of about 20 deg$^2$, with the H$alpha$ flux sensitivity limit of $sim 1.6 times 10^{-16} rm erg cm^{-2} s^{-1}$ at 4.5 sigma. This paper presents the catalogs of the FastSound emission lines and galaxies, which will be open to the public in the near future. We also present basic properties of typical FastSound H$alpha$ emitters, which have H$alpha$ luminosities of $10^{41.8}$-$10^{43.3}$ erg/s, SFRs of 20--500 $M_odot$/yr, and stellar masses of $10^{10.0}$--$10^{11.3}$ $M_odot$. The 3D distribution maps for the four fields of CFHTLS W1--4 are presented, clearly showing large scale clustering of galaxies at the scale of $sim$ 100--600 comoving Mpc. Based on 1,105 galaxies with detections of multiple emission lines, we estimate that contamination of non-H$alpha$ lines is about 4% in the single-line emission galaxies, which are mostly [OIII]$lambda$5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which H$alpha$, [NII]$lambda lambda$6548,6583, [SII]$lambda lambda$6717, 6731, and [OI]$lambda lambda$6300,6364 are seen.
We present a thorough characterization of a large sample of 183 extreme emission-line galaxies (EELGs) at redshift 0.11 < z < 0.93 selected from the 20k zCOSMOS Bright Survey because of their unusually large emission line equivalent widths. We use multiwavelength COSMOS photometry, HST-ACS I-band imaging and optical zCOSMOS spectroscopy to derive the main global properties of EELGs, such as sizes, masses, SFRs, reliable metallicities from both direct and strong-line methods. The EELGs are compact (R_50 ~ 1.3 kpc), low-mass (log(M*/Msol)~7-10) galaxies forming stars at unusually high specific SFR (log(sSFR/yr) up to ~ -7) compared to main sequence SFGs of the same stellar mass and redshift. At UV wavelengths, the EELGs are luminous and show high surface brightness and include strong Ly$alpha$ emitters, as revealed by GALEX spectroscopy. We show that zCOSMOS EELGs are high-ionization, low-metallicity systems, with median 12+log(O/H)=8.16, including a handful of extremely metal-deficient galaxies (<10% solar). While ~80% of the EELGs show non-axisymmetric morphologies, including clumpy and tadpole galaxies, we find that ~29% of them show additional low surface-brightness features, which strongly suggest recent or ongoing interactions. As star-forming dwarfs in the local Universe, EELGs are most often found in relative isolation. While only very few EELGs belong to compact groups, almost one third of them are found in spectroscopically confirmed loose pairs or triplets. We conclude that EELGs are galaxies caught in a transient and probably early period of their evolution, where they are efficiently building-up a significant fraction of their present-day stellar mass in an ongoing galaxy-wide starburst. Therefore, the EELGs constitute an ideal benchmark for comparison studies between low- and high-redshift low-mass star-forming galaxies.
Many processes within galaxy clusters, such as those believed to govern the onset of thermally unstable cooling and AGN feedback, are dependent upon local dynamical timescales. However, accurately mapping the mass distribution within individual clusters is challenging, particularly towards cluster centres where the total mass budget has substantial radially-dependent contributions from the stellar, gas, and dark matter components. In this paper we use a small sample of galaxy clusters with deep Chandra observations and good ancillary tracers of their gravitating mass at both large and small radii to develop a method for determining mass profiles that span a wide radial range and extend down into the central galaxy. We also consider potential observational pitfalls in understanding cooling in hot cluster atmospheres, and find tentative evidence for a relationship between the radial extent of cooling X-ray gas and nebular H-alpha emission in cool core clusters. Amongst this small sample we find no support for the existence of a central entropy floor, with the entropy profiles following a power-law profile down to our resolution limit.
Radio relics are diffuse, extended synchrotron sources that originate from shock fronts generated during cluster mergers. The massive merging galaxy cluster MACS J0717.5+3745 hosts one of the more complex relics known to date. We present upgraded Giant Metrewave Radio Telescope band 3 (300-500 MHz) and band 4 (550-850 MHz) observations. These new observations, combined with published VLA and the new LOFAR HBA data, allow us to carry out a detailed, high spatial resolution spectral analysis of the relic over a broad range of frequencies. The integrated spectrum of the relic closely follows a power-law between 144 MHz and 5.5 GHz with a mean spectral slope $alpha=-1.16pm0.03$. Despite its complex morphology, the subregions of the relic and the other isolated filaments also follow power-law behaviors, and show similar spectral slopes. Assuming Diffusive Shock Acceleration, we estimate a dominant Mach number of $sim 3.7$ for the shocks that make up the relic. Comparison with recent numerical simulations suggests that in the case of radio relics, the slopes of the integrated radio spectra are determined by the Mach number of the accelerating shock, with $alpha$ nearly constant, namely between $-1.13$ and $-1.17$, for Mach numbers $3.5 - 4.0$. The spectral shapes inferred from spatially resolved regions show curvature, we speculate that the relic is inclined along the line-of-sight. The locus of points in the simulated color-color plots changes significantly with the relic viewing angle. We conclude that projection effects and inhomogeneities in the shock Mach number dominate the observed spectral properties of the relic in this complex system. Based on the new observations we raise the possibility that the relic and a narrow-angle-tailed radio galaxy are two different structures projected along the same line-of-sight.
The study of the evolution of the morphological distribution of galaxies in different environments can provide important information about the effects of the environment and the physical mechanisms responsible for the morphological transformations. As part of a complete analysis of the young cluster RXJ1257+4738 at z$sim$0.9, we studied in this work the morphological properties of its galaxies. We used non-parametric methods of morphological classification, as implemented in the galSVM code. The classification with the applied method was possible even using ground-based observations: r-band imaging from OSIRIS/GTC. We defined very conservative probability limits, taking into account the probability errors, in order to obtain a trustworthy classification. In this way we were able to classify about the 30% of all cluster members, and to separate between LT and ET galaxies. Additionally, when analysing the colour-magnitude diagram, we observed a significant population of blue ET galaxies between the classified ones. We discussed possible explanations for the finding of this population. Moreover, we studied different physical properties of LT, ET, and blue ET galaxies. They turn out to be comparable, with the exception of the stellar mass that shows that the red ET population is more massive. We also analysed the morphology-density and morphology-radius relations, observing that, only when considering the morphological separation between ET and LT galaxies, a mild classical behaviour is obtained. RXJ1257+4738 is a young galaxy cluster, showing a clumpy structure and being still in the process of formation, which could explain the lack of some of the standard morphological relations. This makes this cluster a very attractive case for obtaining the higher resolution data and for studying in more details the morphological properties of the entire cluster and relation with the environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا