We investigate the action of local and global noise on monogamy of quantum correlations, when monogamy scores are considered as observables, and three-qubit systems are subjected to global noise and various local noisy channels, namely, amplitude-damping, phase-damping, and depolarizing channels. We show that the dynamics of monogamy scores corresponding to negativity and quantum discord, in the case of generalized W states, as inputs to the noisy channels, can exhibit non-monotonic dynamics with respect to increasing noise parameter, which is in contrast to the monotonic decay of monogamy scores when generalized Greenberger-Horne-Zeilinger states are exposed to noise. We quantify the persistence of monogamy against noise via a characteristic value of the noise parameter, and show that depolarizing noise destroys monogamy of quantum correlation faster compared to other noisy channels. We demonstrate that the negativity monogamy score is more robust than the quantum discord monogamy score, when the noise is of the phase-damping type. We also investigate the variation of monogamy with increasing noise for arbitrary three-qubit pure states as inputs. Finally, depending on these results, we propose a two-step protocol, which can conclusively identify the type of noise applied to the quantum system, by using generalized Greenberger-Horne-Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties.