Do you want to publish a course? Click here

Mapping PAH sizes in NGC 7023 with SOFIA

59   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

NGC 7023 is a well-studied reflection nebula, which shows strong emission from polycyclic aromatic hydrocarbon (PAH) molecules in the form of aromatic infrared bands (AIBs). The spectral variations of the AIBs in this region are connected to the chemical evolution of the PAH molecules which, in turn, depends on the local physical conditions. We use the capabilities of SOFIA to observe a 3.2 x 3.4 region of NGC 7023 at wavelengths that we observe with high spatial resolution (2.7) at 3.3 and 11.2 um. We compare the SOFIA images with existing images of the PAH emission at 8.0 um (Spitzer), emission from evaporating very small grains (eVSG) extracted from Spitzer-IRS spectral cubes, the ERE (HST and CFHT), and H_2 (2.12 um). We create maps of the 11.2/3.3 um ratio to probe the morphology of the PAH size distribution and the 8.0/11.2 um ratio to probe the PAH ionization. We make use of an emission model and of vibrational spectra from the NASA Ames PAHdb to translate the 11.2/3.3 um ratio to PAH sizes. The 11.2/3.3 um map shows the smallest PAH concentrate on the PDR surface (H_2 and extended red emission) in the NW and South PDR. We estimated that PAHs in the NW PDR bear, on average, a number of carbon atoms (N_c) of ~70 in the PDR cavity and ~50 at the PDR surface. In the entire nebula, the results reveal a factor of 2 variation in the size of the PAH. We relate these size variations to several models for the evolution of the PAH families when they traverse from the molecular cloud to the PDR. The PAH size map enables us to follow the photochemical evolution of PAHs in NGC 7023. Small PAHs result from the photo-evaporation of VSGs as they reach the PDR surface. Inside the PDR cavity, the PAH abundance drops as the smallest PAH are broken down. The average PAH size increases in the cavity where only the largest species survive or are converted into C_60 by photochemical processing.



rate research

Read More

222 - M. Kohler , E. Habart , H. Arab 2014
The determination of the physical conditions in molecular clouds is a key step towards our understanding of their formation and evolution of associated star formation. We investigate the density, temperature, and column density of both dust and gas in the photodissociation regions (PDRs) located at the interface between the atomic and cold molecular gas of the NGC 7023 reflection nebula. We study how young stars affect the gas and dust in their environment. Our approach combining both dust and gas delivers strong constraints on the physical conditions of the PDRs. We find dense and warm molecular gas of high column density in the PDRs.
We report the first detection of galactic spiral structure by means of thermal emission from magnetically aligned dust grains. Our 89 $mu$m polarimetric imaging of NGC 1068 with the High-resolution Airborne Wideband Camera/Polarimeter (HAWC+) on NASAs Stratospheric Observatory for Infrared Astronomy (SOFIA) also sheds light on magnetic field structure in the vicinity of the galaxys inner-bar and active galactic nucleus (AGN). We find correlations between the 89 $mu$m magnetic field vectors and other tracers of spiral arms, and a symmetric polarization pattern as a function of the azimuthal angle arising from the projection and inclination of the disk field component in the plane of the sky. The observations can be fit with a logarithmic spiral model with pitch angle of $16.9^{+2.7}_{-2.8}$$^{circ}$ and a disk inclination of $48pm2^{circ}$. We infer that the bulk of the interstellar medium from which the polarized dust emission originates is threaded by a magnetic field that closely follows the spiral arms. Inside the central starburst disk ($<1.6$ kpc), the degree of polarization is found to be lower than for far-infrared sources in the Milky Way, and has minima at the locations of most intense star formation near the outer ends of the inner-bar. Inside the starburst ring, the field direction deviates from the model, becoming more radial along the leading edges of the inner-bar. The polarized flux and dust temperature peak $sim 3-6$ NE of the AGN at the location of a bow shock between the AGN outflow and the surrounding interstellar medium, but the AGN itself is weakly polarized ($< 1$%) at both 53 and 89 um.
Large spatial-spectral surveys are more and more common in astronomy. This calls for the need of new methods to analyze such mega- to giga-pixel data-cubes. In this paper we present a method to decompose such observations into a limited and comprehensive set of components. The original data can then be interpreted in terms of linear combinations of these components. The method uses non-negative matrix factorization (NMF) to extract latent spectral end-members in the data. The number of needed end-members is estimated based on the level of noise in the data. A Monte-Carlo scheme is adopted to estimate the optimal end-members, and their standard deviations. Finally, the maps of linear coefficients are reconstructed using non-negative least squares. We apply this method to a set of hyperspectral data of the NGC 7023 nebula, obtained recently with the HIFI instrument onboard the Herschel space observatory, and provide a first interpretation of the results in terms of 3-dimensional dynamical structure of the region.
We present SOFIA/FIFI-LS observations of the [CII] 158${mu}$m cooling line across the nearby spiral galaxy NGC 6946. We combine these with UV, IR, CO, and H I data to compare [CII] emission to dust properties, star formation rate (SFR), H$_2$, and HI at 560pc scales via stacking by environment (spiral arms, interarm, and center), radial profiles, and individual, beam-sized measurements. We attribute $73%$ of the [CII] luminosity to arms, and $19%$ and $8%$ to the center and interarm region, respectively. [CII]/TIR, [CII]/CO, and [CII]/PAH radial profiles are largely constant, but rise at large radii ($gtrsim$8kpc) and drop in the center ([CII] deficit). This increase at large radii and the observed decline with the 70${mu}$m/100${mu}$m dust color are likely driven by radiation field hardness. We find a near proportional [CII]-SFR scaling relation for beam-sized regions, though the exact scaling depends on methodology. [CII] also becomes increasingly luminous relative to CO at low SFR (interarm or large radii), likely indicating more efficient photodissociation of CO and emphasizing the importance of [CII] as an H$_2$ and SFR tracer in such regimes. Finally, based on the observed [CII] and CO radial profiles and different models, we find ${alpha}_{CO}$ to increase with radius, in line with the observed metallicity gradient. The low ${alpha}_{CO}$ (galaxy average $lesssim2,M_{sun},pc^{-2},(K,km,s^{-1})^{-1}$) and low [CII]/CO ratios ($sim$400 on average) imply little CO-dark gas across NGC 6946, in contrast to estimates in the Milky Way.
Based on theoretical spectra computed using Density Functional Theory we study the properties of Polycyclic Aromatic Hydrocarbons (PAH). In particular using bin-average spectra of PAH molecules with varying number of carbons we investigate how the intensity of the mid-infrared emission bands, 3.3, 6.2, 7.7 and 11.3 microns, respond to changes in the number of carbons, charge of the molecule, and the hardness of the radiation field that impinges the molecule. We confirm that the 6.2/7.7 band ratio is a good predictor for the size of the PAH molecule (based on the number of carbons present). We also investigate the efficacy of the 11.3/3.3 ratio to trace the size of PAH molecules and note the dependence of this ratio on the hardness of the radiation field. While the ratio can potentially also be used to trace PAH molecular size, a better understanding of the impact of the underlying radiation field on the 3.3 microns feature and the effect of the extinction on the ratio should be evaluated. The newly developed diagnostics are compared to band ratios measured in a variety of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telescope. We demonstrate that the band ratios can be used to probe the conditions of the interstellar medium in galaxies and differentiate between environments encountered in normal star forming galaxies and Active Galactic Nuclei. Our work highlights the immense potential that PAH observations with the James Webb Space Telescope will have on our understanding of the PAH emission itself and of the physical conditions in galaxies near and far.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا