No Arabic abstract
In this paper, we study networked control systems in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent transmissions over the communication network. The control objective is to maximize frequency and duration of the DoS attacks under which closed-loop stability is not destroyed. Analog and digital predictor-based controllers with state resetting are proposed, which achieve the considered control objective for a general class of DoS signals. An example is given to illustrate the proposed solution approach.
In this paper, we study networked systems in the presence of Denial-of-Service (DoS) attacks, namely attacks that prevent transmissions over the communication network. Previous studies have shown that co-located architectures (control unit co-located with the actuators and networked sensor channel) can ensure a high level of robustness against DoS. However, co-location requires a wired or dedicated actuator channel, which could not meet flexibility and cost requirements. In this paper we consider a control architecture that approximates co-location while enabling remote implementation (networked sensor and actuator channels). We analyze closed-loop stability and quantify the robustness gap between this architecture and the co-located one.
Resilience has become a key aspect in the design of contemporary infrastructure networks. This comes as a result of ever-increasing loads, limited physical capacity, and fast-growing levels of interconnectedness and complexity due to the recent technological advancements. The problem has motivated a considerable amount of research within the last few years, particularly focused on the dynamical aspects of network flows, complementing more classical static network flow optimization approaches. In this tutorial paper, a class of single-commodity first-order models of dynamical flow networks is considered. A few results recently appeared in the literature and dealing with stability and robustness of dynamical flow networks are gathered and originally presented in a unified framework. In particular, (differential) stability properties of monotone dynamical flow networks are treated in some detail, and the notion of margin of resilience is introduced as a quantitative measure of their robustness. While emphasizing methodological aspects -- including structural properties, such as monotonicity, that enable tractability and scalability -- over the specific applications, connections to well-established road traffic flow models are made.
The paper introduces a class of zero-sum games between the adversary and controller as a scenario for a `denial of service in a networked control system. The communication link is modeled as a set of transmission regimes controlled by a strategic jammer whose intention is to wage an attack on the plant by choosing a most damaging regime-switching strategy. We demonstrate that even in the one-step case, the introduced games admit a saddle-point equilibrium, at which the jammers optimal policy is to randomize in a region of the plants state space, thus requiring the controller to undertake a nontrivial response which is different from what one would expect in a standard stochastic control problem over a packet dropping link. The paper derives conditions for the introduced games to have such a saddle-point equilibrium. Furthermore, we show that in more general multi-stage games, these conditions provide `greedy jamming strategies for the adversary.
In this paper, we address the issue of congestion in future Unmanned Aerial Vehicle (UAVs) traffic system in uncertain weather. We treat the traffic of UAVs as fluid queues, and introduce models for traffic dynamics at three basic traffic components: single link, tandem link, and merge link. The impact of weather uncertainty is captured as fluctuation of the saturation rate of fluid queue discharge (capacity). The uncertainty is assumed to follow a continuous-time Markov process. We define the resilience of the UAV traffic system as the long-run stability of the traffic queues and the optimal throughput strategy under uncertainties. We derive the necessary and sufficient conditions for the stabilities of the traffic queues in the three basic traffic components. Both conditions can be easily verified in practiceB. The optimal throughput can be calculated via the stability conditions. Our results offer strong insight and tool for designing flows in the UAV traffic system that is resilient against weather uncertainty.
Trajectory optimization of a controlled dynamical system is an essential part of autonomy, however many trajectory optimization techniques are limited by the fidelity of the underlying parametric model. In the field of robotics, a lack of model knowledge can be overcome with machine learning techniques, utilizing measurements to build a dynamical model from the data. This paper aims to take the middle ground between these two approaches by introducing a semi-parametric representation of the underlying system dynamics. Our goal is to leverage the considerable information contained in a traditional physics based model and combine it with a data-driven, non-parametric regression technique known as a Gaussian Process. Integrating this semi-parametric model with model predictive pseudospectral control, we demonstrate this technique on both a cart pole and quadrotor simulation with unmodeled damping and parametric error. In order to manage parametric uncertainty, we introduce an algorithm that utilizes Sparse Spectrum Gaussian Processes (SSGP) for online learning after each rollout. We implement this online learning technique on a cart pole and quadrator, then demonstrate the use of online learning and obstacle avoidance for the dubin vehicle dynamics.