Do you want to publish a course? Click here

A Brief Technical History of the Large-Area Picosecond Photodetector (LAPPD) Collaboration

88   0   0.0 ( 0 )
 Added by Henry J. Frisch
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Large Area Picosecond PhotoDetector (LAPPD) Collaboration was formed in 2009 to develop large-area photodetectors capable of time resolutions measured in pico-seconds, with accompanying sub-millimeter spatial resolution. During the next three and one-half years the Collaboration developed the LAPPD design of 20 x 20 cm modules with gains greater than $10^7$ and non-uniformity less than $15%$, time resolution less than 50 psec for single photons and spatial resolution of 700~microns in both lateral dimensions. We describe the R&D performed to develop large-area micro-channel plate glass substrates, resistive and secondary-emitting coatings, large-area bialkali photocathodes, and RF-capable hermetic packaging. In addition, the Collaboration developed the necessary electronics for large systems capable of precise timing, built up from a custom low-power 15-GigaSample/sec waveform sampling 6-channel integrated circuit and supported by a two-level modular data acquisition system based on Field-Programmable Gate Arrays for local control, data-sparcification, and triggering. We discuss the formation, organization, and technical successes and short-comings of the Collaboration. The Collaboration ended in December 2012 with a transition from R&D to commercialization.



rate research

Read More

We have designed and prototyped the process steps for the batch production of large-area micro-channel-plate photomultipliers (MCP-PMT) using the air-transfer assembly process developed with single $LAPPD^{text{TM}}$ modules. Results are presented addressing the challenges of designing a robust package that can transmit large numbers of electrical signals for pad or strip readout from inside the vacuum tube and hermetically sealing the large-perimeter window-body interface. We have also synthesized a photocathode in a large-area low-aspect-ratio volume, and shown that the micro-channel plates recover their functionality after cathode synthesis. The steps inform a design for a multi-module batch facility employing dual nested low-vacuum (LV) and ultra-high-vacuum (UHV) systems in a small-footprint. The facility design provides full access to multiple MCP-PMT modules prior to hermetic pinch-off for leak-checking and real-time photocathode optimization.
TORCH is a time-of-flight detector that is being developed for the Upgrade II of the LHCb experiment, with the aim of providing charged particle identification over the momentum range 2-10 GeV/c. A small-scale TORCH demonstrator with customised readout electronics has been operated successfully in beam tests at the CERN PS. Preliminary results indicate that a single-photon resolution better than 100 ps can be achieved.
118 - R. Neilson , F. LePort , A. Pocar 2009
EXO-200 uses 468 large area avalanche photodiodes (LAAPDs) for detection of scintillation light in an ultra-low-background liquid xenon (LXe) detector. We describe initial measurements of dark noise, gain and response to xenon scintillation light of LAAPDs at temperatures from room temperature to 169K - the temperature of liquid xenon. We also describe the individual characterization of more than 800 LAAPDs for selective installation in the EXO-200 detector.
The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design we proposed for a revolutionary photon detector. The main idea is to replace the classical dynode chain of a PMT with a SiPM (G-APD), the latter acting as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performance of the SiPM technology. The VSiPMT has many attractive features. In particular, a low power consumption and an excellent photon counting capability. To prove the feasibility of the idea we first tested the performance of a special non-windowed SiPM by Hamamatsu (MPPC) as electron detector and current amplifier. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes. In this work, we present the results of a full characterization of the VSiPMT prototype.
We present the design and characterization of a large-area Cryogenic PhotoDetector (CPD) designed for active particle identification in rare event searches, such as neutrinoless double beta decay and dark matter experiments. The detector consists of a $45.6$ $mathrm{cm}^2$ surface area by 1-mm-thick $10.6$ $mathrm{g}$ Si wafer. It is instrumented with a distributed network of Quasiparticle-trap-assisted Electrothermal feedback Transition-edge sensors (QETs) with superconducting critical temperature $T_c=41.5$ $mathrm{mK}$ to measure athermal phonons released from interactions with photons. The detector is characterized and calibrated with a collimated $^{55}$Fe X-ray source incident on the center of the detector. The noise equivalent power is measured to be $1times 10^{-17}$ $mathrm{W}/sqrt{mathrm{Hz}}$ in a bandwidth of $2.7$ $mathrm{kHz}$. The baseline energy resolution is measured to be $sigma_E = 3.86 pm 0.04$ $(mathrm{stat.})^{+0.23}_{-0.00}$ $(mathrm{syst.})$ $mathrm{eV}$ (RMS). The detector also has an expected timing resolution of $sigma_t = 2.3$ $mumathrm{s}$ for $5$ $sigma_E$ events.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا