Do you want to publish a course? Click here

OFDM demodulation using virtual time reversal processing in underwater acoustic communication

65   0   0.0 ( 0 )
 Added by Yue Yang Dr
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The extremely long underwater channel delay spread causes severe inter-symbol interference (ISI) for underwater acoustic communications. Passive time reversal processing (PTRP) can effectively reduce the channel time dispersion in a simple way via convolving the received packet with a time reversed probe signal. However the probe signal itself may introduce extra noise and interference (self-correlation of the probe signal). In this paper, we propose a virtual time reversal processing (VTRP) for single input single output (SISO) Orthogonal Frequency Division Multiplexing (OFDM) systems. It convolves the received packet with the reversed estimated channel, instead of the probe signal to reduce the interference. Two sparse channel estimation methods, matching pursuit (MP), and basis pursuit de-noising (BPDN), are adopted to estimate the channel impulse response (CIR). We compare the performance of VTRP with the PTRP and without any time reversal processing through MATLAB simulations and the pool experiments. The results reveal that VTRP has outstanding performance over time-invariant channels.



rate research

Read More

Differential orthogonal frequency division multiplexing (OFDM) is practically attractive for underwater acoustic communications since it has the potential to obviate channel estimation. However, similar to coherent OFDM, it may suffer from severe inter-carrier interference over time-varying channels. To alleviate the induced performance degradation, we adopt the newly-emerging partial FFT demodulation technique in this paper and propose an eigendecomposition-based algorithm to compute the combining weights. Compared to existing adaptive methods, the new algorithm can avoid error propagation and eliminate the need for parameter tuning. Moreover, it guarantees global optimality under the narrowband Doppler assumption, with the optimal weight vector of partial FFT demodulation achieved by the eigenvector associated with the smallest eigenvalue of the pilot detection error matrix. Finally, the algorithm can also be extended straightforwardly to perform subband-wise computation to counteract wideband Doppler effects.
81 - Lei Wan , Jiang Zhu , En Cheng 2021
In this paper, we propose an iterative receiver based on gridless variational Bayesian line spectra estimation (VALSE) named JCCD-VALSE that emph{j}ointly estimates the emph{c}arrier frequency offset (CFO), the emph{c}hannel with high resolution and carries out emph{d}ata decoding. Based on a modularized point of view and motivated by the high resolution and low complexity gridless VALSE algorithm, three modules named the VALSE module, the minimum mean squared error (MMSE) module and the decoder module are built. Soft information is exchanged between the modules to progressively improve the channel estimation and data decoding accuracy. Since the delays of multipaths of the channel are treated as continuous parameters, instead of on a grid, the leakage effect is avoided. Besides, the proposed approach is a more complete Bayesian approach as all the nuisance parameters such as the noise variance, the parameters of the prior distribution of the channel, the number of paths are automatically estimated. Numerical simulations and sea test data are utilized to demonstrate that the proposed approach performs significantly better than the existing grid-based generalized approximate message passing (GAMP) based emph{j}oint emph{c}hannel and emph{d}ata decoding approach (JCD-GAMP). Furthermore, it is also verified that joint processing including CFO estimation provides performance gain.
In this paper, we consider an eavesdropping attack on a multi-hop, UnderWater Acoustic Sensor Network (UWASN) that consists of $M+1$ underwater sensors which report their sensed data via Orthogonal Frequency Division Multiplexing (OFDM) scheme to a sink node on the water surface. Furthermore, due to the presence of a passive malicious node in nearby vicinity, the multi-hop UnderWater Acoustic (UWA) channel between a sensor node and the sink node is prone to eavesdropping attack on each hop. Therefore, the problem at hand is to do (helper/relay) node selection (for data forwarding onto the next hop) as well as power allocation (across the OFDM sub-carriers) in a way that the secrecy rate is maximized at each hop. To this end, this problem of Node Selection and Power Allocation (NSPA) is formulated as a mixed binary-integer optimization program, which is then optimally solved via decomposition approach, and by exploiting duality theory along with the Karush-Kuhn-Tucker conditions. We also provide a computationally-efficient, sub-optimal solution to the NSPA problem, where we reformulate it as a mixed-integer linear program and solve it via decomposition and geometric approach. Moreover, when the UWA channel is multipath (and not just line-of-sight), we investigate an additional, machine learning-based approach to solve the NSPA problem. Finally, we compute the computational complexity of all the three proposed schemes (optimal, sub-optimal, and learning-based), and do extensive simulations to compare their performance against each other and against the baseline schemes (which allocate equal power to all the sub-carriers and do depth-based node selection). In a nutshell, this work proposes various (optimal and sub-optimal) methods for providing information-theoretic security at the physical layer of the protocol stack through resource allocation.
In this paper, we study the spectral efficiency (SE) and energy efficiency (EE) of asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) for visible light communication (VLC). Firstly, we derive the achiev-able rates for Gaussian distributions inputs and practical finite-alphabet inputs. Then, we investigate the SE maximization problems subject to both the total transmit power constraint and the average optical power constraint with the above two inputs, respectively. By exploiting the relationship between the mutual information and the minimum mean-squared error, an optimal power allocation scheme is proposed to maximize the SE with finite-alphabet inputs. To reduce the computational complexity of the power allocation scheme, we derive a closed-form lower bound of the SE. Also, considering the quality of service, we further tackle the non-convex EE maximization problems of ACO-OFDM with the two inputs, respectively. The problems are solved by the proposed Dinkelbach-type iterative algorithm. In each iteration, the interior point algorithm is applied to obtain the optimal power allocation.The performance of the proposed power allocation schemes for the SE and EE maximization are validated through numerical analysis.
In this paper, we propose a frequency-time division network (FreqTimeNet) to improve the performance of deep learning (DL) based OFDM channel estimation. This FreqTimeNet is designed based on the orthogonality between the frequency domain and the time domain. In FreqTimeNet, the input is processed by parallel frequency blocks and parallel time blocks in sequential. Introducing the attention mechanism to use the SNR information, an attention based FreqTimeNet (AttenFreqTimeNet) is proposed. Using 3rd Generation Partnership Project (3GPP) channel models, the mean square error (MSE) performance of FreqTimeNet and AttenFreqTimeNet under different scenarios is evaluated. A method for constructing mixed training data is proposed, which could address the generalization problem in DL. It is observed that AttenFreqTimeNet outperforms FreqTimeNet, and FreqTimeNet outperforms other DL networks, with acceptable complexity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا