No Arabic abstract
We develop numerical tools and apply them to solve the relativistic Yang--Mills--Higgs equations in a model where the SU(N) symmetry is spontaneously broken to its center. In SU(2) and SU(3), we obtain the different field profiles for infinite and finite center vortices, with endpoints at external monopole sources. Exploration of parameter space permits the detection of a region where the equations get Abelianized. Finally, a general parametrization of the color structure of SU(2) fields leads us to a reference point where an Abelian-like BPS bound is reconciled with N-ality.
By using the method of center projection the center vortex part of the gauge field is isolated and its propagator is evaluated in the center Landau gauge, which minimizes the open 3-dimensional Dirac volumes of non-trivial center links bounded by the closed 2-dimensional center vortex surfaces. The center field propagator is found to dominate the gluon propagator (in Landau gauge) in the low momentum regime and to give rise to an OPE correction to the latter of ${sqrt{sigma}}/{p^3}$.The screening mass of the center vortex field vanishes above the critical temperature of the deconfinement phase transition, which naturally explains the second order nature of this transition consistent with the vortex picture. Finally, the ghost propagator of maximal center gauge is found to be infrared finite and thus shows that the coset fields play no role for confinement.
The center vortex model for the infrared sector of SU(3) Yang-Mills theory is reviewed. After discussing the physical foundations underlying the model, some technical aspects of its realisation are discussed. The confining properties of the model are presented in some detail and compared to known results from full lattice Yang-Mills theory. Particular emphasis is put on the new phenomenon of vortex branching, which is instrumental in establishing first order behaviour of the SU(3) phase transition. Finally, the vortex free energy is verified to furnish an order parameter for the deconfinement phase transition. It is shown to exhibit a weak discontinuity at the critical temperature, in agreement with predictions from lattice gauge theory.
As shown by Taubes, in the Bogomolnyi-Prasad-Sommerfield limit the SU(2) Yang-Mills-Higgs model possesses smooth finite energy solutions, which do not satisfy the first order Bogomolnyi equations. We construct numerically such a non-Bogomolnyi solution, corresponding to a monopole-antimonopole pair, and extend the construction to finite Higgs potential.
We examine the mechanical matrix model that can be derived from the SU(2) Yang-Mills light-cone field theory by restricting the gauge fields to depend on the light-cone time alone. We use Diracs generalized Hamiltonian approach. In contrast to its well-known instant-time counterpart the light-cone version of SU(2) Yang-Mills mechanics has in addition to the constraints, generating the SU(2) gauge transformations, the new first and second class constraints also. On account of all of these constraints a complete reduction in number of the degrees of freedom is performed. It is argued that the classical evolution of the unconstrained degrees of freedom is equivalent to a free one-dimensional particle dynamics. Considering the complex solutions to the second class constraints we show at this time that the unconstrained Hamiltonian system represents the well-known model of conformal mechanics with a ``strength of the inverse square interaction determined by the value of the gauge field spin.
The spectral properties of a set of local gauge (BRST) invariant composite operators are investigated in the $SU(2)$ Yang--Mills--Higgs model with a single Higgs field in the fundamental representation, quantized in the t Hooft $R_{xi}$-gauge. These operators can be thought of as a BRST invariant version of the elementary fields of the theory, the Higgs and gauge fields, with which they share a gauge independent pole mass. The two-point correlation functions of both BRST invariant composite operators and elementary fields, as well as their spectral functions, are investigated at one-loop order. It is shown that the spectral functions of the elementary fields suffer from a strong unphysical dependence from the gauge parameter $xi$, and can even exhibit positivity violating behaviour. In contrast, the BRST invariant local operators exhibit a well defined positive spectral density.