Do you want to publish a course? Click here

Star formation along the Hubble sequence: Radial structure of the star formation of CALIFA galaxies

74   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to characterize the radial structure of the star formation rate (SFR) in galaxies in the nearby Universe as represented by the CALIFA survey. The sample under study contains 416 galaxies observed with IFS, covering a wide range of Hubble types and stellar masses. Spectral synthesis techniques are applied to obtain radial profiles of the intensity of the star formation rate in the recent past, and the local sSFR. To emphasize the behavior of these properties for galaxies that are on and off the main sequence of star formation (MSSF) we stack the individual radial profiles in bins of galaxy morphology and stellar masses. Our main results are: a) The intensity of SFR shows declining profiles that exhibit very little differences between spirals. The dispersion between the profiles is significantly smaller in late type spirals. This confirms that the MSSF is a sequence of galaxies with nearly constant intensity of SFR b) sSFR values scale with Hubble type and increase radially outwards, with a steeper slope in the inner 1 HLR. This behavior suggests that galaxies are quenched inside-out, and that this process is faster in the central, bulge-dominated part than in the disks. c) As a whole, and at all radii, E and S0 are off the MSSF. d) Applying the volume-corrections for the CALIFA sample, we obtain a density of star formation in the local Universe of 0.0105 Msun/yr/Mpc^{-3}. Most of the star formation is occurring in the disks of spirals. e) The volume averaged birthrate parameter, b=0.39, suggests that the present day Universe is forming stars at 1/3 of its past average rate. E, S0, and the bulge of early type spirals contribute little to the recent SFR of the Universe, which is dominated by the disks of later spirals. f) There is a tight relation between the intensity of the SFR and stellar mass, defining a local MSSF relation with a logarithmic slope of 0.8.



rate research

Read More

We study the radial structure of the stellar mass surface density ($mu$) and stellar population age as a function of the total stellar mass and morphology for a sample of 107 galaxies from the CALIFA survey. We use the fossil record to recover the star formation history (SFH) in spheroidal and disk dominated galaxies with masses from 10$^9$ to 10$^{12}$ M$_odot$. We derive the half mass radius, and we find that galaxies are on average 15% more compact in mass than in light. HMR/HLR decreases with increasing mass for disk galaxies, but is almost constant in spheroidal galaxies. We find that the galaxy-averaged stellar population age, stellar extinction, and $mu$ are well represented by their values at 1 HLR. Negative radial gradients of the stellar population ages support an inside-out formation. The larger inner age gradients occur in the most massive disk galaxies that have the most prominent bulges; shallower age gradients are obtained in spheroids of similar mass. Disk and spheroidal galaxies show negative $mu$ gradients that steepen with stellar mass. In spheroidal galaxies $mu$ saturates at a critical value that is independent of the galaxy mass. Thus, all the massive spheroidal galaxies have similar local $mu$ at the same radius (in HLR units). The SFH of the regions beyond 1 HLR are well correlated with their local $mu$, and follow the same relation as the galaxy-averaged age and $mu$; suggesting that local stellar mass surface density preserves the SFH of disks. The SFH of bulges are, however, more fundamentally related to the total stellar mass, since the radial structure of the stellar age changes with galaxy mass even though all the spheroid dominated galaxies have similar radial structure in $mu$. Thus, galaxy mass is a more fundamental property in spheroidal systems while the local stellar mass surface density is more important in disks.
Galaxy evolution is generally affected by tidal interactions. Firstly, in this series, we reported several effects which suggest that tidal interactions contribute to regulating star formation (SF). To confirm that so, we now compare stellar mass assembly histories and SF look-back time annular profiles between CALIFA survey tidally and non-tidally perturbed galaxies. We pair their respective star-forming regions at the closest stellar mass surface densities to reduce the influence of stellar mass. The assembly histories and annular profiles show statistically significant differences so that higher star formation rates characterize regions in tidally perturbed galaxies. These regions underwent a more intense (re)activation of SF in the last 1 Gyr. Varying shapes of the annular profiles also reflect fluctuations between suppression and (re)activation of SF. Since gas-phase abundances use to be lower in more actively than in less actively star-forming galaxies, we further explore the plausible presence of metal-poor gas inflows able to dilute such abundances. The resolved relations of oxygen (O) abundance, with stellar mass density and with total gas fraction, show slightly lower O abundances for regions in tidally perturbed galaxies. The single distributions of O abundances statistically validate that so. Moreover, from a metallicity model based on stellar feedback, the mass rate differentials (inflows$-$outflows) show statistically valid higher values for regions in tidally perturbed galaxies. These differentials, and the metal fractions from the population synthesis, suggest dominant gas inflows in these galaxies. This dominance, and the differences in SF through time, confirm the previously reported effects of tidal interactions on SF.
We use optical integral-field spectroscopic (IFS) data from 103 nearby galaxies at different stages of the merging event, from close pairs to merger remnants provided by the CALIFA survey, to study the impact of the interaction in the specific star formation and oxygen abundance on different galactic scales. To disentangle the effect of the interaction and merger from internal processes, we compared our results with a control sample of 80 non-interacting galaxies. We confirm the moderate enhancement (2-3 times) of specific star formation for interacting galaxies in central regions as reported by previous studies; however, the specific star formation is comparable when observed in extended regions. We find that control and interacting star-forming galaxies have similar oxygen abundances in their central regions, when normalized to their stellar masses. Oxygen abundances of these interacting galaxies seem to decrease compared to the control objects at the large aperture sizes measured in effective radius. Although the enhancement in central star formation and lower metallicities for interacting galaxies have been attributed to tidally induced inflows, our results suggest that other processes such as stellar feedback can contribute to the metal enrichment in interacting galaxies.
The star formation main sequence (SFMS) is a tight relation between the galaxy star formation rate (SFR) and its total stellar mass ($M_star$). Early-type galaxies (ETGs) are often considered as low-SFR outliers of this relation. We study, for the first time, the separated distribution in the SFR vs. $M_star$ of bulges and discs of 49 ETGs from the CALIFA survey. This is achieved using C2D, a new code to perform spectro-photometric decompositions of integral field spectroscopy datacubes. Our results reflect that: i) star formation always occurs in the disc component and not in bulges; ii) star-forming discs in our ETGs are compatible with the SFMS defined by star forming galaxies at $z sim 0$; iii) the star formation is not confined to the outskirts of discs, but it is present at all radii (even where the bulge dominates the light); iv) for a given mass, bulges exhibit lower sSFR than discs at all radii; and v) we do not find a deficit of molecular gas in bulges with respect to discs for a given mass in our ETGs. We speculate our results favour a morphological quenching scenario for ETGs.
The Calar Alto Legacy Integral Field Area (CALIFA) is an ongoing 3D spectroscopic survey of 600 nearby galaxies of all kinds. This pioneer survey is providing valuable clues on how galaxies form and evolve. Processed through spectral synthesis techniques, CALIFA datacubes allow us to, for the first time, spatially resolve the star formation history of galaxies spread across the color-magnitude diagram. The richness of this approach is already evident from the results obtained for the first 107 galaxies. Here we show how the different galactic spatial sub-components (bulge and disk) grow their stellar mass over time. We explore the results stacking galaxies in mass bins, finding that, except at the lowest masses, galaxies grow inside-out, and that the growth rate depends on a galaxys mass. The growth rate of inner and outer regions differ maximally at intermediate masses. We also find a good correlation between the age radial gradient and the stellar mass density, suggesting that the local density is a main driver of galaxy evolution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا