Do you want to publish a course? Click here

Quantum Monte Carlo simulation with a black hole

252   0   0.0 ( 0 )
 Added by Arata Yamamoto
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We perform quantum Monte Carlo simulations in the background of a classical black hole. The lattice discretized path integral is numerically calculated in the Schwarzschild metric and in its approximated metric. We study spontaneous symmetry breaking of a real scalar field theory. We observe inhomogeneous symmetry breaking induced by inhomogeneous gravitational field.



rate research

Read More

We present results from the evolution of spacetimes that describe the merger of asymptotically global AdS black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring-down. The boundary stress tensor of the dual CFT is conformally related to a stress tensor in Minkowski space which inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times.
We take a first step towards a holographic description of a black hole by means of a flow equation. We consider a free theory of multiple scalar fields at finite temperature and study its holographic geometry defined through a free flow of the scalar fields. We find that the holographic metric has the following properties: i) It is an asymptotic Anti-de Sitter (AdS) black brane metric with some unknown matter contribution. ii) It has no coordinate singularity and milder curvature singularity. iii) Its time component decays exponentially at a certain AdS radial slice. We find that the matter spreads all over the space, which we speculate to be due to thermal excitation of infinitely many massless higher spin fields. We conjecture that the above three are generic features of a black hole holographically realized by the flow equation method.
We improve upon the simple model studied by Casadio and Orlandi [JHEP 1308 (2013) 025] for a black hole as a condensate of gravitons. Instead of the harmonic oscillator potential, the Poschl-Teller potential is used, which allows for a continuum of scattering states. The quantum mechanical model is embedded into a relativistic wave equation for a complex Klein-Gordon field, and the charge of the field is interpreted as the gravitational charge (mass) carried by the graviton condensate.
We investigate possible signatures of black hole events at the LHC in the hypothesis that such objects will not evaporate completely, but leave a stable remnant. For the purpose of defining a reference scenario, we have employed the publicly available Monte Carlo generator CHARYBDIS2, in which the remnants behavior is mostly determined by kinematic constraints and conservation of some quantum numbers, such as the baryon charge. Our findings show that electrically neutral remnants are highly favored and a significantly larger amount of missing transverse momentum is to be expected with respect to the case of complete decay.
We present a method for direct hybrid Monte Carlo simulation of graphene on the hexagonal lattice. We compare the results of the simulation with exact results for a unit hexagonal cell system, where the Hamiltonian can be solved analytically.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا