Do you want to publish a course? Click here

Decapitation via Digital Epidemics: A Bio-Inspired Transmissive Attack

64   0   0.0 ( 0 )
 Added by Shin-Ming Cheng
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

The evolution of communication technology and the proliferation of electronic devices have rendered adversaries powerful means for targeted attacks via all sorts of accessible resources. In particular, owing to the intrinsic interdependency and ubiquitous connectivity of modern communication systems, adversaries can devise malware that propagates through intermediate hosts to approach the target, which we refer to as transmissive attacks. Inspired by biology, the transmission pattern of such an attack in the digital space much resembles the spread of an epidemic in real life. This paper elaborates transmissive attacks, summarizes the utility of epidemic models in communication systems, and draws connections between transmissive attacks and epidemic models. Simulations, experiments, and ongoing research challenges on transmissive attacks are also addressed.



rate research

Read More

166 - Bowei Xi , Yujie Chen , Fan Fei 2021
The paper develops a new adversarial attack against deep neural networks (DNN), based on applying bio-inspired design to moving physical objects. To the best of our knowledge, this is the first work to introduce physical attacks with a moving object. Instead of following the dominating attack strategy in the existing literature, i.e., to introduce minor perturbations to a digital input or a stationary physical object, we show two new successful attack strategies in this paper. We show by superimposing several patterns onto one physical object, a DNN becomes confused and picks one of the patterns to assign a class label. Our experiment with three flapping wing robots demonstrates the possibility of developing an adversarial camouflage to cause a targeted mistake by DNN. We also show certain motion can reduce the dependency among consecutive frames in a video and make an object detector blind, i.e., not able to detect an object exists in the video. Hence in a successful physical attack against DNN, targeted motion against the system should also be considered.
Conficker is a computer worm that erupted on the Internet in 2008. It is unique in combining three different spreading strategies: local probing, neighbourhood probing, and global probing. We propose a mathematical model that combines three modes of spreading, local, neighbourhood and global to capture the worms spreading behaviour. The parameters of the model are inferred directly from network data obtained during the first day of the Conifcker epidemic. The model is then used to explore the trade-off between spreading modes in determining the worms effectiveness. Our results show that the Conficker epidemic is an example of a critically hybrid epidemic, in which the different modes of spreading in isolation do not lead to successful epidemics. Such hybrid spreading strategies may be used beneficially to provide the most effective strategies for promulgating information across a large population. When used maliciously, however, they can present a dangerous challenge to current internet security protocols.
Deep convolutional neural networks (DCNNs) have revolutionized computer vision and are often advocated as good models of the human visual system. However, there are currently many shortcomings of DCNNs, which preclude them as a model of human vision. For example, in the case of adversarial attacks, where adding small amounts of noise to an image, including an object, can lead to strong misclassification of that object. But for humans, the noise is often invisible. If vulnerability to adversarial noise cannot be fixed, DCNNs cannot be taken as serious models of human vision. Many studies have tried to add features of the human visual system to DCNNs to make them robust against adversarial attacks. However, it is not fully clear whether human vision inspired components increase robustness because performance evaluations of these novel components in DCNNs are often inconclusive. We propose a set of criteria for proper evaluation and analyze different models according to these criteria. We finally sketch future efforts to make DCCNs one step closer to the model of human vision.
`Anytime, Anywhere data access model has become a widespread IT policy in organizations making insider attacks even more complicated to model, predict and deter. Here, we propose Gargoyle, a network-based insider attack resilient framework against the most complex insider threats within a pervasive computing context. Compared to existing solutions, Gargoyle evaluates the trustworthiness of an access request context through a new set of contextual attributes called Network Context Attribute (NCA). NCAs are extracted from the network traffic and include information such as the users device capabilities, security-level, current and prior interactions with other devices, network connection status, and suspicious online activities. Retrieving such information from the users device and its integrated sensors are challenging in terms of device performance overheads, sensor costs, availability, reliability and trustworthiness. To address these issues, Gargoyle leverages the capabilities of Software-Defined Network (SDN) for both policy enforcement and implementation. In fact, Gargoyles SDN App can interact with the network controller to create a `defence-in-depth protection system. For instance, Gargoyle can automatically quarantine a suspicious data requestor in the enterprise network for further investigation or filter out an access request before engaging a data provider. Finally, instead of employing simplistic binary rules in access authorizations, Gargoyle incorporates Function-based Access Control (FBAC) and supports the customization of access policies into a set of functions (e.g., disabling copy, allowing print) depending on the perceived trustworthiness of the context.
Researchers traditionally solve the computational problems through rigorous and deterministic algorithms called as Hard Computing. These precise algorithms have widely been realized using digital technology as an inherently reliable and accurate implementation platform, either in hardware or software forms. This rigid form of implementation which we refer as Hard Realization relies on strict algorithmic accuracy constraints dictated to digital design engineers. Hard realization admits paying as much as necessary implementation costs to preserve computation precision and determinism throughout all the design and implementation steps. Despite its prior accomplishments, this conventional paradigm has encountered serious challenges with todays emerging applications and implementation technologies. Unlike traditional hard computing, the emerging soft and bio-inspired algorithms do not rely on fully precise and deterministic computation. Moreover, the incoming nanotechnologies face increasing reliability issues that prevent them from being efficiently exploited in hard realization of applications. This article examines Soft Realization, a novel bio-inspired approach to design and implementation of an important category of applications noticing the internal brain structure. The proposed paradigm mitigates major weaknesses of hard realization by (1) alleviating incompatibilities with todays soft and bio-inspired algorithms such as artificial neural networks, fuzzy systems, and human sense signal processing applications, and (2) resolving the destructive inconsistency with unreliable nanotechnologies. Our experimental results on a set of well-known soft applications implemented using the proposed soft realization paradigm in both reliable and unreliable technologies indicate that significant energy, delay, and area savings can be obtained compared to the conventional implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا