Do you want to publish a course? Click here

Measurement of two-photon exchange effect by comparing elastic $e^pm p$ cross sections

195   0   0.0 ( 0 )
 Added by Brian Raue
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

[Background] The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer ($Q^{2}$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. [Purpose] We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. [Methods] We produced a mixed simultaneous electron-positron beam in Jefferson Labs Hall B by passing the 5.6 GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron/positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm long liquid hydrogen (LH$_2$) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented.



rate research

Read More

The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct $e^pm p$ comparisons, which has the potential to make precise measurements over a broad range in $Q^2$ and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of $Q^2$ and scattering angle. Nonetheless, this measurement yields a data sample for $e^pm p$ with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: $R=1.027pm0.005pm0.05$ for $<Q^2>=0.206$ GeV$^2$ and $0.830leq epsilonleq 0.943$.
The E12-14-012 experiment, performed in Jefferson Lab Hall A, has collected exclusive electron-scattering data (e,e$^prime$p) in parallel kinematics using natural argon and natural titanium targets. Here, we report the first results of the analysis of the data set corresponding to beam energy of 2,222 MeV, electron scattering angle 21.5 deg, and proton emission angle -50 deg. The differential cross sections, measured with $sim$4% uncertainty, have been studied as a function of missing energy and missing momentum, and compared to the results of Monte Carlo simulations, obtained from a model based on the Distorted Wave Impulse Approximation.
We report on the status of the Novosibirsk experiment on a precision measurement of the ratio $R$ of the elastic $e^+ p$ and $e^- p$ scattering cross sections. Such measurements determine the two-photon exchange effect in elastic electron-proton scattering. The experiment is conducted at the VEPP-3 storage ring using a hydrogen internal gas target. The ratio $R$ is measured with a beam energy of 1.6 GeV (electron/positron scattering angles are $theta = 55 div 75^{circ}$ and $theta = 15 div 25^{circ}$) and 1 GeV ($theta = 65 div 105^{circ}$). We briefly describe the experimental method, paying special attention to the radiative corrections. Some preliminary results are presented.
We review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e+p to e-p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.
82 - T.Uglov , et al. 2004
We report first measurements of e+e- -> D(*)+D(*)- processes far above threshold. The cross-sections for e+e- -> DT*+DL*- and e+e- -> D+D*T- at sqrt{s}=10.58 GeV/c2 are measured to be 0.55 +- 0.03 +- 0.05 pb and 0.62 +- 0.03 +- 0.06 pb, respectively. We set upper limits on the cross-sections for e+e- -> DT*+DT*-, e+e- -> DL*+DL*-, e+e- -> D+D*L- and e+e- -> D+D- processes. The analysis is based on 88.9 fb-1 of data collected by the Belle experiment at the KEKB e+e- asymmetric collider.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا