Do you want to publish a course? Click here

High-resolution magnetic penetration depth and inhomogeneities in locally noncentrosymmetric SrPtAs

222   0   0.0 ( 0 )
 Added by Javier Landaeta
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a magnetic-penetration-depth study on polycrystalline and granular samples of SrPtAs, a pnictide superconductor with a hexagonal structure containing PtAs layers that individually break inversion symmetry (local noncentrosymmetry). Compact samples show a clear-cut s-wave-type BCS behavior, which we consider to be the intrinsic penetration depth of SrPtAs. Granular samples display a sample-dependent second diamagnetic drop, attributed to the intergrain coupling. Our experimental results point to a nodeless isotropic superconducting energy gap in SrPtAs, which puts strong constraints on the driven mechanism for superconductivity and the order parameter symmetry of this compound.



rate research

Read More

We report the magnetic and superconducting properties of locally noncentrosymmetric SrPtAs obtained by muon-spin-rotation/relaxation (muSR) measurements. Zero-field muSR reveals the occurrence of small spontaneous static magnetic fields with the onset of superconductivity. This finding suggests that the superconducting state of SrPtAs breaks time-reversal symmetry. The superfluid density as determined by transverse field muSR is nearly flat approaching T = 0 K proving the absence of extended nodes in the gap function. By symmetry, several superconducting states supporting time-reversal symmetry breaking in SrPtAs are allowed. Out of these, a dominantly d + id (chiral d-wave) order parameter is most consistent with our experimental data.
We report on measurements of the temperature dependence of the magnetic penetration depth of a very high quality single crystal of nonmagnetic superconductor LaPt3Si without inversion symmetry. The results are compared with those previously reported for the isostructural antiferromagnetic superconductor CePt3Si. At low temperatures, the penetration depth follows a BCS exponential behavior that implies an isotropic energy gap in LaPt3Si, in contrast to a linear response that indicates line nodes in CePt3Si. These line nodes have been argued to be protected by symmetry or accidentally generated by parity mixing. The present results provide support for the viewpoint that parity mixing alone does not seem to lead to unconventionality in CePt3Si and that it requires the antiferromagnetic order to be included.
We report measurements of the temperature dependence of the magnetic penetration depth in different quality polycrystalline samples of noncentrosymmetric LaNiC2 down to 0.05 K. This compound has no magnetic phases and breaks time-reversal symmetry. In our highest quality sample we observe a T^2 dependence below 0.4Tc indicative of nodes in the energy gap. We argue that previous results suggesting conventional s-wave behavior may have been affected by magnetic impurities.
We study the effect of disorder on the London penetration depth in iron-based superconductors. The theory is based on a two-band model with quasi-two-dimensional Fermi surfaces, which allows for the coexistence region in the phase diagram between magnetic and superconducting states in the presence of intraband and interband scattering. Within the quasiclassical approximation we derive and solve Eilenbergers equations, which include a weak external magnetic field, and provide analytical expressions for the penetration depth in the various limiting cases. A complete numerical analysis of the doping and temperature dependence of the London penetration depth reveals the crucial effect of disorder scattering, which is especially pronounced in the coexistence phase. The experimental implications of our results are discussed.
79 - X. H. Chen 2001
The penetration depth lambda of MgB2 was deduced from both the ac susceptibility chi and the magnetization M(H) of sorted powders. The good agreement between the two sets of data without geometric correction for the grain orientation suggests that MgB2 is an isotropic superconductor.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا