Do you want to publish a course? Click here

Line-driven ablation of circumstellar disks: I. Optically thin decretion disks of classical Oe/Be stars

122   0   0.0 ( 0 )
 Added by Nathaniel Dylan Kee
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The extreme luminosities of hot, massive stars drive strong stellar winds through UV line-scattering. For OB stars with an orbiting circumstellar disk, we explore the effect of such line-scattering in ablating disk material, initially focusing on the marginally optically thin decretion disks of classical Oe and Be stars. For this we apply a multi-dimensional radiation-hydrodynamics code, assuming optically thin ray tracing for the stellar continuum and a multi-ray Sobolev treatment of the line transfer. This accounts for desaturation of line-absorption by Keplerian shear in the disk, and associated driving by non-radial photons. Results show dense, intermediate-speed surface ablation, consistent with the strong, blue-shifted absorption seen in UV wind lines of Be shell stars. The asymptotic ablation rate is typically an order-unity factor times the stellar wind mass loss rate, leading to disk destruction times of order months to years for Be disks, consistent with observations. The much stronger radiative forces of O stars reduce this time to order days, making sustaining a disk difficult, and so providing a natural explanation for the rarity of Galactic Oe stars. Additionally, the weakened line-driving at lower metallicity implies both a reduction in the winds that help spin-down stars from near-critical rotation, and in the ablation of decretion disks, thus providing a natural explanation for the higher fraction of Classical Be stars, and the presence of Oe stars, in the Magellanic Clouds. We conclude with a discussion of future extensions to study line-driven ablation of denser, optically thick, accretion disks around pre-main-sequence massive stars.



rate research

Read More

Evolutionary models of fast-rotating stars show that the stellar rotational velocity may approach the critical speed. Critically rotating stars cannot spin up more, therefore they lose their excess angular momentum through an equatorial outflowing disk. The radial extension of such disks is unknown, partly because we lack information about the radial variations of the viscosity. We study the magnetorotational instability, which is considered to be the origin of anomalous viscosity in outflowing disks. We used analytic calculations to study the stability of outflowing disks submerged in the magnetic field. The magnetorotational instability develops close to the star if the plasma parameter is large enough. At large radii the instability disappears in the region where the disk orbital velocity is roughly equal to the sound speed. The magnetorotational instability is a plausible source of anomalous viscosity in outflowing disks. This is also true in the region where the disk radial velocity approaches the sound speed. The disk sonic radius can therefore be roughly considered as an effective outer disk radius, although disk material may escape from the star to the insterstellar medium. The radial profile of the angular momentum-loss rate already flattens there, consequently, the disk mass-loss rate can be calculated with the sonic radius as the effective disk outer radius. We discuss a possible observation determination of the outer disk radius by using Be and Be/X-ray binaries.
We completed a search for circumstellar disks around Herbig Be stars using the NRAO Very Large Array (VLA) and the IRAM Plateau de Bure (PdB) interferometers. We present our new VLA and PdBI data for the three objects MWC 297, Z CMa, and LKHa 215. We constructed the SED from near-IR to centimeter wavelengths by adding our millimeter and centimeter data to the available data at other wavelengths, mainly Spitzer images. The entire SED was fitted using a disk+envelope model. In addition, we compiled all the disk millimeter observations in the literature and completed a statistical analysis of all the data. We show that the disk mass is usually only a small percentage (less than 10%) of the mass of the entire envelope in HBe stars. For the disks, there are large source-to-source variations. Two disks in our sample, R Mon and Z CMa, have similar sizes and masses to those found in T Tauri and Herbig Ae stars. The disks around MWC 1080 and MWC 297 are, however, smaller (rout<100 AU). We did not detect the disks towards MWC 137 and LkHa 215 at millimeter wavelengths, which limits the mass and the size of the possible circumstellar disks. A comparison between our data and previous results for T Tauri and Herbig Ae stars indicates that although massive disks (0.1 Msun) are found in young objects (10^4 yr), the masses of the disks around Herbig Be stars are usually 5-10 times lower than those around lower mass stars. We propose that disk photoevaporation is responsible for this behavior. In Herbig Be stars, the UV radiation disperses the gas in the outer disk on a timescale of a few 10^5 yr. Once the outer part of the disk has vanished, the entire gaseous disk is photoevaporated on a very short timescale (10^5 yr) and only a small, dusty disk consisting of large grains remains.
We report on a high angular resolution survey of circumstellar disks around 24 northern sky Be stars. The K-band continuum survey was made using the CHARA Array long baseline interferometer (baselines of 30 to 331 m). The interferometric visibilities were corrected for the flux contribution of stellar companions in those cases where the Be star is a member of a known binary or multiple system. For those targets with good uv coverage, we used a four parameter Gaussian elliptical disk model to fit the visibilities and to determine the axial ratio, position angle, K-band photospheric flux contribution, and angular diameter of the disk major axis. For the other targets with relatively limited uv coverage, we constrained the axial ratio, inclination angle, and or disk position angle where necessary in order to resolve the degeneracy between possible model solutions. We also made fits of the ultraviolet and infrared spectral energy distributions to estimate the stellar angular diameter and infrared flux excess of each target. The mean ratio of the disk diameter (measured in K-band emission) to stellar diameter (from SED modeling) is 4.4 among the 14 cases where we reliably resolved the disk emission, a value which is generally lower than the disk size ratio measured in the higher opacity Halpha emission line. We estimated the equatorial rotational velocity from the projected rotational velocity and disk inclination for 12 stars, and most of these stars rotate close to or at the critical rotational velocity.
The first results from a near-contemporaneous optical and infrared spectroscopic observing program designed to probe the detailed density structure of classical Be circumstellar disks are presented. We report the discovery of asymmetrical infrared emission lines of He I, O I, Fe II, and the Brackett, Paschen, and Pfund series lines of H I which exhibit an opposite V/R orientation (V $>$ R) to that observed for the optical Balmer H$alpha$ line (V $<$ R) in the classical Be star $zeta$ Tau. We interpret these data as evidence that the density wave which characterizes $zeta$ Taus disk has a significantly different average azimuthal morphology in the inner disk region as compared to the outer disk region. A follow-up multi-wavelength observational campaign to trace the temporal evolution of these line profile morphologies, along with detailed theoretical modeling, is suggested to test this hypothesis.
We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as $10^{-4} M_{odot}$. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of $F_{mm} propto M_{ast}^{1.5-2.0}$ to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا