Resonance Reaction in Diffusion-Influenced Bimolecular Reactions


Abstract in English

We investigate the influence of a stochastically fluctuating step-barrier potential on bimolecular reaction rates by exact analytical theory and stochastic simulations. We demonstrate that the system exhibits a new resonant reaction behavior with rate enhancement if an appropriately defined fluctuation decay length is of the order of the system size. Importantly, we find that in the proximity of resonance the standard reciprocal additivity law for diffusion and surface reaction rates is violated due to the dynamical coupling of multiple kinetic processes. Together, these findings may have important repercussions on the correct interpretation of various kinetic reaction problems in complex systems, as, e.g., in biomolecular association or catalysis.

Download