Do you want to publish a course? Click here

The Herschel Orion Protostar Survey: Spectral Energy Distributions and Fits Using a Grid of Protostellar Models

142   0   0.0 ( 0 )
 Added by Elise Furlan
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present key results from the Herschel Orion Protostar Survey (HOPS): spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star-formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel, and sub-millimeter photometry from APEX, our SEDs cover 1.2-870 $mu$m and sample the peak of the protostellar envelope emission at ~100 $mu$m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well-fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.



rate research

Read More

The Herschel Orion Protostar Survey obtained well-sampled 1.2 - 870 micron spectral energy distributions (SEDs) of over 300 protostars in the Orion molecular clouds, home to most of the young stellar objects (YSOs) in the nearest 500 pc. We plot the bolometric luminosities and temperatures for 330 Orion YSOs, 315 of which have bolometric temperatures characteristic of protostars. The histogram of bolometric temperature is roughly flat; 29% of the protostars are in Class 0. The median luminosity decreases by a factor of four with increasing bolometric temperature; consequently, the Class 0 protostars are systematically brighter than the Class I protostars, with a median luminosity of 2.3 L_sun as opposed to 0.87 L_sun. At a given bolometric temperature, the scatter in luminosities is three orders of magnitude. Using fits to the SEDs, we analyze how the luminosities corrected for inclination and foreground reddening relate to the mass in the inner 2500 AU of the best-fit model envelopes. The histogram of envelope mass is roughly flat, while the median corrected luminosity peaks at 15 L_sun for young envelopes and falls to 1.7 L_sun for late-stage protostars with remnant envelopes. The spread in luminosity at each envelope mass is three orders of magnitude. Envelope masses that decline exponentially with time explain the flat mass histogram and the decrease in luminosity, while the formation of a range of stellar masses explains the dispersion in luminosity.
136 - Odysseas Dionatos 2018
(Abridged) Mid- and far-infrared observations of the environment around embedded protostars reveal a plethora of high excitation molecular and atomic emission lines. In this work we present spectro-imaging observations of the HH211 system with Herschel/PACS that record emission from major molecular (CO, H2O and OH) and atomic coolants (e.g. [OI]). Molecular lines are mainly exited at the terminal bowshocks of the outflow and around the position of the protostar. All lines show maxima at the southeast bowshock with the exception of water emission that peaks around the central source. Excitation analysis in all positions shows that CO and H$_2$O are mainly thermally excited at T~ 350 K and 90 K respectively, with the CO showing a second temperature component at 750 K towards the southeast peak. Excitation analysis breaks down in the case of OH, indicating that the molecule is non-thermally excited. Comparisons between the CO and H2 column densities suggest that the CO abundance value in shocks can be up to an order of magnitude lower than the canonical value of 10$^{-4}$. The water ortho-to-para ratio around the protostar is only 0.65, indicating low-temperature water ice formation followed by non-destructive photodesorption from the dust grains. Therefore the low ortho-to-para ratio in water that can be interpreted in terms of formation from a primordial gas reservoir in the protostellar envelope. The two-sided total atomic mass flux estimated from the [OI] jet sums to 1.65$times 10^{-6}$ M$_{odot}$ yr$^{-1}$, a value that is very close to the mass flux previously estimated for the SiO jet and the H$_2$ outflow. These comparisons render HH211 the first embedded system where an atomic jet is demonstrably shown to possess enough momentum to drive the observed molecular jets and large scale outflows.
We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the HIFI instrument aboard the textit{Herschel Space Observatory}, covering the frequency range 480 to 1900 GHz. We detect 685 spectral lines with S/N $>$ 3$sigma$, originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, & V$_{LSR}$). We find evidence for three different cloud components: a cool (T$_{ex} sim 20-40$ K), spatially extended ($> 60$), and quiescent ($Delta V_{FWHM} sim 4$ km s $^{-1}$) component; a warmer (T$_{ex} sim 80-100$ K), less spatially extended ($sim 30$), and dynamic ($Delta V_{FWHM} sim 8$ km s $^{-1}$) component, which is likely affected by embedded outflows; and a kinematically distinct region (T$_{ex}$ $>$ 100 K; V$_{LSR}$ $sim$ 8 km s $^{-1}$), dominated by emission from species which trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct hot core component, likely due to the small filling factor of the hot core or hot cores within the textit{Herschel} beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South.
The degree to which the properties of protostars are affected by environment remains an open question. To investigate this, we look at the Orion A and B molecular clouds, home to most of the protostars within 500 pc. At ~400 pc, Orion is close enough to distinguish individual protostars across a range of environments in terms of both the stellar and gas projected densities. As part of the Herschel Orion Protostar Survey (HOPS), we used the Photodetector Array Camera and Spectrometer (PACS) to map 108 partially overlapping square fields with edge lengths of 5 arcmin or 8 arcmin and measure the 70 micron and 160 micron flux densities of 338 protostars within them. In this paper we examine how these flux densities and their ratio depend on evolutionary state and environment within the Orion complex. We show that Class 0 protostars occupy a region of the 70 micron flux density versus 160 micron to 70 micron flux density ratio diagram that is distinct from their more evolved counterparts. We then present evidence that the Integral-Shaped Filament (ISF) and Orion B contain protostars with more massive envelopes than those in the more sparsely populated LDN 1641 region. This can be interpreted as evidence for increasing star formation rates in the ISF and Orion B or as a tendency for more massive envelopes to be inherited from denser birth environments. We also provide technical details about the map-making and photometric procedures used in the HOPS program.
We used ALMA to observe the star-forming region GGD27 at 1.14 mm with an unprecedented angular resolution, 40 mas (56 au) and sensitivity (0.002 Msun). We detected a cluster of 25 continuum sources, most of which are likely tracing disks around Class 0/I protostars. Excluding the two most massive objects, disks masses are in the range 0.003-0.05 Msun. The analysis of the cluster properties indicates that GGD27 displays moderate subclustering. This result combined with the dynamical timescale of the radio jet (10000 years) suggests the youthfulness of the cluster. The lack of disk mass segregation signatures may support this too. We found a clear paucity of disks with Rdisk >100 au. The median value of the radius is 34 au, smaller than the median of 92 au for Taurus but comparable to the value found in Ophiuchus and in the Orion Nebula Cluster. In GGD27 there is no evidence of a distance-dependent disk mass distribution (i. e., disk mass depletion due to external photoevaporation), most likely due to the cluster youth. There is a clear deficit of disks for distances <0.02 pc. Only for distances >0.04 pc stars can form larger and more massive disks, suggesting that dynamical interactions far from the cluster center are weaker, although the small disks found could be the result of disk truncation. This work demonstrates the potential to characterize disks from low-mass YSOs in distant and massive (still deeply embedded) clustered environments.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا