No Arabic abstract
Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution equations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
We consider a class of physiologically structured population models, a first order nonlinear partial differential equation equipped with a nonlocal boundary condition, with a constant external inflow of individuals. We prove that the linearised system is governed by a quasicontraction semigroup. We also establish that linear stability of equilibrium solutions is governed by a generalized net reproduction function. In a special case of the model ingredients we discuss the nonlinear dynamics of the system when the spectral bound of the linearised operator equals zero, i.e. when linearisation does not decide stability. This allows us to demonstrate, through a concrete example, how immigration might be beneficial to the population. In particular, we show that from a nonlinearly unstable positive equilibrium a linearly stable and unstable pair of equilibria bifurcates. In fact, the linearised system exhibits bistability, for a certain range of values of the external inflow, induced potentially by All{e}e-effect.
We study the mathematical properties of a general model of cell division structured with several internal variables. We begin with a simpler and specific model with two variables, we solve the eigenvalue problem with strong or weak assumptions, and deduce from it the long-time convergence. The main difficulty comes from natural degeneracy of birth terms that we overcome with a regularization technique. We then extend the results to the case with several parameters and recall the link between this simplified model and the one presented in cite{CBBP1}; an application to the non-linear problem is also given, leading to robust subpolynomial growth of the total population.
We consider a size-structured aggregation and growth model of phytoplankton community proposed by Ackleh and Fitzpatrick [2]. The model accounts for basic biological phenomena in phytoplankton community such as growth, gravitational sedimentation, predation by zooplankton, fecundity, and aggregation. Our primary goal in this paper is to investigate the long-term behavior of the proposed aggregation and growth model. Particularly, using the well-known principle of linearized stability and semigroup compactness arguments, we provide sufficient conditions for local exponential asymptotic stability of zero solution as well as sufficient conditions for instability. We express these conditions in the form of an easy to compute characteristic function, which depends on the functional relationship between growth, sedimentation and fecundity. Our results can be used to predict long-term phytoplankton dynamic
We study the question of existence of positive steady states of nonlinear evolution equations. We recast the steady state equation in the form of eigenvalue problems for a parametrised family of unbounded linear operators, which are generators of strongly continuous semigroups; and a fixed point problem. In case of irreducible governing semigroups we consider evolution equations with non-monotone nonlinearities of dimension two, and we establish a new fixed point theorem for set-valued maps. In case of reducible governing semigroups we establish results for monotone nonlinearities of any finite dimension $n$. In addition, we establish a non-quasinilpotency result for a class of strictly positive operators, which are neither irreducible nor compact, in general. We illustrate our theoretical results with examples of partial differential equations arising in structured population dynamics. In particular, we establish existence of positive steady states of a size-structured juvenile-adult and a structured consumer-resource population model, as well as for a selection-mutation model with distributed recruitment process.
We analyze the asymptotic behavior of a partial differential equation (PDE) model for hematopoiesis. This PDE model is derived from the original agent-based model formulated by (Roeder et al., Nat. Med., 2006), and it describes the progression of blood cell development from the stem cell to the terminally differentiated state. To conduct our analysis, we start with the PDE model of (Kim et al, JTB, 2007), which coincides very well with the simulation results obtained by Roeder et al. We simplify the PDE model to make it amenable to analysis and justify our approximations using numerical simulations. An analysis of the simplified PDE model proves to exhibit very similar properties to those of the original agent-based model, even if for slightly different parameters. Hence, the simplified model is of value in understanding the dynamics of hematopoiesis and of chronic myelogenous leukemia, and it presents the advantage of having fewer parameters, which makes comparison with both experimental data and alternative models much easier.