Mathematical control theory, the immune system, and cancer


Abstract in English

Simple ideas, endowed from the mathematical theory of control, are used in order to analyze in general grounds the human immune system. The general principles are minimization of the pathogen load and economy of resources. They should constrain the parameters describing the immune system. In the simplest linear model, for example, where the response is proportional to the load, the annihilation rate of pathogens in any tissue should be greater than the pathogens average rate of growth. When nonlinearities are added, a reference value for the number of pathogens is set, and a stability condition emerges, which relates strength of regular threats, barrier height and annihilation rate. The stability condition allows a qualitative comparison between tissues. On the other hand, in cancer immunity, the linear model leads to an expression for the lifetime risk, which accounts for both the effects of carcinogens (endogenous or external) and the immune response.

Download