Do you want to publish a course? Click here

Mathematical control theory, the immune system, and cancer

101   0   0.0 ( 0 )
 Added by Augusto Gonzalez
 Publication date 2016
  fields Biology
and research's language is English




Ask ChatGPT about the research

Simple ideas, endowed from the mathematical theory of control, are used in order to analyze in general grounds the human immune system. The general principles are minimization of the pathogen load and economy of resources. They should constrain the parameters describing the immune system. In the simplest linear model, for example, where the response is proportional to the load, the annihilation rate of pathogens in any tissue should be greater than the pathogens average rate of growth. When nonlinearities are added, a reference value for the number of pathogens is set, and a stability condition emerges, which relates strength of regular threats, barrier height and annihilation rate. The stability condition allows a qualitative comparison between tissues. On the other hand, in cancer immunity, the linear model leads to an expression for the lifetime risk, which accounts for both the effects of carcinogens (endogenous or external) and the immune response.



rate research

Read More

We study a five-compartment mathematical model originally proposed by Kuznetsov et al. (1994) to investigate the effect of nonlinear interactions between tumour and immune cells in the tumour microenvironment, whereby immune cells may induce tumour cell death, and tumour cells may inactivate immune cells. Exploiting a separation of timescales in the model, we use the method of matched asymptotics to derive a new two-dimensional, long-timescale, approximation of the full model, which differs from the quasi-steady-state approximation introduced by Kuznetsov et al. (1994), but is validated against numerical solutions of the full model. Through a phase-plane analysis, we show that our reduced model is excitable, a feature not traditionally associated with tumour-immune dynamics. Through a systematic parameter sensitivity analysis, we demonstrate that excitability generates complex bifurcating dynamics in the model. These are consistent with a variety of clinically observed phenomena, and suggest that excitability may underpin tumour-immune interactions. The model exhibits the three stages of immunoediting - elimination, equilibrium, and escape, via stable steady states with different tumour cell concentrations. Such heterogeneity in tumour cell numbers can stem from variability in initial conditions and/or model parameters that control the properties of the immune system and its response to the tumour. We identify different biophysical parameter targets that could be manipulated with immunotherapy in order to control tumour size, and we find that preferred strategies may differ between patients depending on the strength of their immune systems, as determined by patient-specific values of associated model parameters.
In this article, we review the mathematical modeling for the vascular system.
Mathematical modeling in cancer has been growing in popularity and impact since its inception in 1932. The first theoretical mathematical modeling in cancer research was focused on understanding tumor growth laws and has grown to include the competition between healthy and normal tissue, carcinogenesis, therapy and metastasis. It is the latter topic, metastasis, on which we will focus this short review, specifically discussing various computational and mathematical models of different portions of the metastatic process, including: the emergence of the metastatic phenotype, the timing and size distribution of metastases, the factors that influence the dormancy of micrometastases and patterns of spread from a given primary tumor.
A principal component analysis of the TCGA data for 15 cancer localizations unveils the following qualitative facts about tumors: 1) The state of a tissue in gene expression space may be described by a few variables. In particular, there is a single variable describing the progression from a normal tissue to a tumor. 2) Each cancer localization is characterized by a gene expression profile, in which genes have specific weights in the definition of the cancer state. There are no less than 2500 differentially-expressed genes, which lead to power-like tails in the expression distribution functions. 3) Tumors in different localizations share hundreds or even thousands of differentially expressed genes. There are 6 genes common to the 15 studied tumor localizations. 4) The tumor region is a kind of attractor. Tumors in advanced stages converge to this region independently of patient age or genetic variability. 5) There is a landscape of cancer in gene expression space with an approximate border separating normal tissues from tumors.
In the last decades, the interest to understand the connection between brain and body has grown notably. For example, in psychoneuroimmunology many studies associate stress, arising from many different sources and situations, to changes in the immune system from the medical or immunological point of view as well as from the biochemical one. In this paper we identify important behaviours of this interplay between the immune system and stress from medical studies and seek to represent them qualitatively in a paradigmatic, yet simple, mathematical model. To that end we develop a differential equation model with two equations for infection level and immune system, which integrates the effects of stress as an additional parameter. We are able to reproduce a stable healthy state for little stress, an oscillatory state between healthy and infected states for high stress, and a burn-out or stable sick state for extremely high stress. The mechanism between the different dynamics is controlled by two saddle-node in cycle (SNIC) bifurcations. Furthermore, our model is able to capture an induced infection upon dropping from moderate to low stress, and it predicts increasing infection periods upon increasing before eventually reaching a burn-out state.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا