No Arabic abstract
Motivated by recent experimental and computational results that show a motility-induced clustering transition in self-propelled particle systems, we study an individual model and its corresponding Self-Organized Hydrodynamic model for collective behaviour that incorporates a density-dependent velocity, as well as inter-particle alignment. The modal analysis of the hydrodynamic model elucidates the relationship between the stability of the equilibria and the changing velocity, and the formation of clusters. We find, in agreement with earlier results for non-aligning particles, that the key criterion for stability is $(rho v(rho))> 0$, i.e. a non-rapid decrease of velocity with density. Numerical simulation for both the individual and hydrodynamic models with a velocity function inspired by experiment demonstrates the validity of the theoretical results.
Various self-organized characteristics of the international system can be identified with the help of a complexity science perspective. The perspective discussed in this article is based on various complexity science concepts and theories, and concepts related to ecology and ecosystems. It can be argued that the Great Power war dynamics of the international system in Europe during the period 1480-1945, showed self-organized critical (SOC) characteristics, resulting in a punctuated equilibrium dynamic. It seems that the SOC-characteristics of the international system and the punctuated equilibrium dynamic were - in combination with chaotic war dynamics - functional in a process of social expansion in Europe. According to a model presented in this article, population growth was a component of the driving force of the international system during this time frame. The findings of this exploratory research project contradict with generally held opinions in International Relations theory.
We provide a complete and rigorous description of phase transitions for kinetic models of self-propelled particles interacting through alignment. These models exhibit a competition between alignment and noise. Both the alignment frequency and noise intensity depend on a measure of the local alignment. We show that, in the spatially homogeneous case, the phase transition features (number and nature of equilibria, stability, convergence rate, phase diagram, hysteresis) are totally encoded in how the ratio between the alignment and noise intensities depend on the local alignment. In the spatially inhomogeneous case, we derive the macroscopic models associated to the stable equilibria and classify their hyperbolicity according to the same function.
In this thesis we present few theoretical studies of the models of self-organized criticality. Following a brief introduction of self-organized criticality, we discuss three main problems. The first problem is about growing patterns formed in the abelian sandpile model (ASM). The patterns exhibit proportionate growth where different parts of the pattern grow in same rate, keeping the overall shape unchanged. This non-trivial property, often found in biological growth, has received increasing attention in recent years. In this thesis, we present a mathematical characterization of a large class of such patterns in terms of discrete holomorphic functions. In the second problem, we discuss a well known model of self-organized criticality introduced by Zhang in 1989. We present an exact analysis of the model and quantitatively explain an intriguing property known as the emergence of quasi-units. In the third problem, we introduce an operator algebra to determine the steady state of a class of stochastic sandpile models.
It has been proposed that adaptation in complex systems is optimized at the critical boundary between ordered and disordered dynamical regimes. Here, we review models of evolving dynamical networks that lead to self-organization of network topology based on a local coupling between a dynamical order parameter and rewiring of network connectivity, with convergence towards criticality in the limit of large network size $N$. In particular, two adaptive schemes are discussed and compared in the context of Boolean Networks and Threshold Networks: 1) Active nodes loose links, frozen nodes aquire new links, 2) Nodes with correlated activity connect, de-correlated nodes disconnect. These simple local adaptive rules lead to co-evolution of network topology and -dynamics. Adaptive networks are strikingly different from random networks: They evolve inhomogeneous topologies and broad plateaus of homeostatic regulation, dynamical activity exhibits $1/f$ noise and attractor periods obey a scale-free distribution. The proposed co-evolutionary mechanism of topological self-organization is robust against noise and does not depend on the details of dynamical transition rules. Using finite-size scaling, it is shown that networks converge to a self-organized critical state in the thermodynamic limit. Finally, we discuss open questions and directions for future research, and outline possible applications of these models to adaptive systems in diverse areas.
In this work we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.