Do you want to publish a course? Click here

Canonical ensemble in non-extensive statistical mechanics when q>1

66   0   0.0 ( 0 )
 Added by Julius Ruseckas
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The non-extensive statistical mechanics has been used to describe a variety of complex systems. The maximization of entropy, often used to introduce the non-extensive statistical mechanics, is a formal procedure and does not easily leads to physical insight. In this article we investigate the canonical ensemble in the non-extensive statistical mechanics by considering a small system interacting with a large reservoir via short-range forces and assuming equal probabilities for all available microstates. We concentrate on the situation when the reservoir is characterized by generalized entropy with non-extensivity parameter q>1. We also investigate the problem of divergence in the non-extensive statistical mechanics occurring when q>1 and show that there is a limit on the growth of the number of microstates of the system that is given by the same expression for all values of q.



rate research

Read More

179 - Julius Ruseckas 2015
The framework of non-extensive statistical mechanics, proposed by Tsallis, has been used to describe a variety of systems. The non-extensive statistical mechanics is usually introduced in a formal way, using the maximization of entropy. In this article we investigate the canonical ensemble in the non-extensive statistical mechanics using a more traditional way, by considering a small system interacting with a large reservoir via short-range forces. The reservoir is characterized by generalized entropy instead of the Boltzmann-Gibbs entropy. Assuming equal probabilities for all available microstates we derive the equations of the non-extensive statistical mechanics. Such a procedure can provide deeper insight into applicability of the non-extensive statistics.
In the realm of Boltzmann-Gibbs (BG) statistical mechanics and its q-generalisation for complex systems, we analyse observed sequences of q-triplets, or q-doublets if one of them is the unity, in terms of cycles of successive Mobius transforms of the line preserving unity ( q=1 corresponds to the BG theory). Such transforms have the form q --> (aq + 1-a)/[(1+a)q -a], where a is a real number; the particular cases a=-1 and a=0 yield respectively q --> (2-q) and q --> 1/q, currently known as additive and multiplicative dualities. This approach seemingly enables the organisation of various complex phenomena into different classes, named N-complete or incomplete. The classification that we propose here hopefully constitutes a useful guideline in the search, for non-BG systems whenever well described through q-indices, of new possibly observable physical properties.
We present a self-contained theory for the exact calculation of particle number counting statistics of non-interacting indistinguishable particles in the canonical ensemble. This general framework introduces the concept of auxiliary partition functions, and represents a unification of previous distinct approaches with many known results appearing as direct consequences of the developed mathematical structure. In addition, we introduce a general decomposition of the correlations between occupation numbers in terms of the occupation numbers of individual energy levels, that is valid for both non-degenerate and degenerate spectra. To demonstrate the applicability of the theory in the presence of degeneracy, we compute energy level correlations up to fourth order in a bosonic ring in the presence of a magnetic field.
We propose a two-parametric non-distributive algebraic structure that follows from $(q,q)$-logarithm and $(q,q)$-exponential functions. Properties of generalized $(q,q)$-operators are analyzed. We also generalize the proposal into a multi-parametric structure (generalization of logarithm and exponential functions and the corresponding algebraic operators). All $n$-parameter expressions recover $(n-1)$-generalization when the corresponding $q_nto1$. Nonextensive statistical mechanics has been the source of successive generalizations of entropic forms and mathematical structures, in which this work is a consequence.
Noethers calculus of invariant variations yields exact identities from functional symmetries. The standard application to an action integral allows to identify conservation laws. Here we rather consider generating functionals, such as the free energy and the power functional, for equilibrium and driven many-body systems. Translational and rotational symmetry operations yield mechanical laws. These global identities express vanishing of total internal and total external forces and torques. We show that functional differentiation then leads to hierarchies of local sum rules that interrelate density correlators as well as static and time direct correlation functions, including memory. For anisotropic particles, orbital and spin motion become systematically coupled. The theory allows us to shed new light on the spatio-temporal coupling of correlations in complex systems. As applications we consider active Brownian particles, where the theory clarifies the role of interfacial forces in motility-induced phase separation. For active sedimentation, the center-of-mass motion is constrained by an internal Noether sum rule.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا