Do you want to publish a course? Click here

On Training Bi-directional Neural Network Language Model with Noise Contrastive Estimation

377   0   0.0 ( 0 )
 Added by Tianxing He
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We propose to train bi-directional neural network language model(NNLM) with noise contrastive estimation(NCE). Experiments are conducted on a rescore task on the PTB data set. It is shown that NCE-trained bi-directional NNLM outperformed the one trained by conventional maximum likelihood training. But still(regretfully), it did not out-perform the baseline uni-directional NNLM.



rate research

Read More

Neural language models do not scale well when the vocabulary is large. Noise-contrastive estimation (NCE) is a sampling-based method that allows for fast learning with large vocabularies. Although NCE has shown promising performance in neural machine translation, it was considered to be an unsuccessful approach for language modelling. A sufficient investigation of the hyperparameters in the NCE-based neural language models was also missing. In this paper, we showed that NCE can be a successful approach in neural language modelling when the hyperparameters of a neural network are tuned appropriately. We introduced the search-then-converge learning rate schedule for NCE and designed a heuristic that specifies how to use this schedule. The impact of the other important hyperparameters, such as the dropout rate and the weight initialisation range, was also demonstrated. We showed that appropriate tuning of NCE-based neural language models outperforms the state-of-the-art single-model methods on a popular benchmark.
184 - Siqi Sun , Zhe Gan , Yu Cheng 2020
Existing language model compression methods mostly use a simple L2 loss to distill knowledge in the intermediate representations of a large BERT model to a smaller one. Although widely used, this objective by design assumes that all the dimensions of hidden representations are independent, failing to capture important structural knowledge in the intermediate layers of the teacher network. To achieve better distillation efficacy, we propose Contrastive Distillation on Intermediate Representations (CoDIR), a principled knowledge distillation framework where the student is trained to distill knowledge through intermediate layers of the teacher via a contrastive objective. By learning to distinguish positive sample from a large set of negative samples, CoDIR facilitates the students exploitation of rich information in teachers hidden layers. CoDIR can be readily applied to compress large-scale language models in both pre-training and finetuning stages, and achieves superb performance on the GLUE benchmark, outperforming state-of-the-art compression methods.
As the vocabulary size of modern word-based language models becomes ever larger, many sampling-based training criteria are proposed and investigated. The essence of these sampling methods is that the softmax-related traversal over the entire vocabulary can be simplified, giving speedups compared to the baseline. A problem we notice about the current landscape of such sampling methods is the lack of a systematic comparison and some myths about preferring one over another. In this work, we consider Monte Carlo sampling, importance sampling, a novel method we call compensated partial summation, and noise contrastive estimation. Linking back to the three traditional criteria, namely mean squared error, binary cross-entropy, and cross-entropy, we derive the theoretical solutions to the training problems. Contrary to some common belief, we show that all these sampling methods can perform equally well, as long as we correct for the intended class posterior probabilities. Experimental results in language modeling and automatic speech recognition on Switchboard and LibriSpeech support our claim, with all sampling-based methods showing similar perplexities and word error rates while giving the expected speedups.
We study the problem of training named entity recognition (NER) models using only distantly-labeled data, which can be automatically obtained by matching entity mentions in the raw text with entity types in a knowledge base. The biggest challenge of distantly-supervised NER is that the distant supervision may induce incomplete and noisy labels, rendering the straightforward application of supervised learning ineffective. In this paper, we propose (1) a noise-robust learning scheme comprised of a new loss function and a noisy label removal step, for training NER models on distantly-labeled data, and (2) a self-training method that uses contextualized augmentations created by pre-trained language models to improve the generalization ability of the NER model. On three benchmark datasets, our method achieves superior performance, outperforming existing distantly-supervised NER models by significant margins.
Recurrent Neural Network Transducer (RNN-T), like most end-to-end speech recognition model architectures, has an implicit neural network language model (NNLM) and cannot easily leverage unpaired text data during training. Previous work has proposed various fusion methods to incorporate external NNLMs into end-to-end ASR to address this weakness. In this paper, we propose extensions to these techniques that allow RNN-T to exploit external NNLMs during both training and inference time, resulting in 13-18% relative Word Error Rate improvement on Librispeech compared to strong baselines. Furthermore, our methods do not incur extra algorithmic latency and allow for flexible plug-and-play of different NNLMs without re-training. We also share in-depth analysis to better understand the benefits of the different NNLM fusion methods. Our work provides a reliable technique for leveraging unpaired text data to significantly improve RNN-T while keeping the system streamable, flexible, and lightweight.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا