Do you want to publish a course? Click here

Coherent spin-light-induced mechanisms in the semi-relativistic limit of the self-consistent Dirac-Maxwell equations

57   0   0.0 ( 0 )
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a self-consistent mean-field model based on a two-component Pauli-like equation that incorporates quantum and relativistic effects (up to second-order in 1/c) for both external and internal electromagnetic fields. By taking the semi-relativistic limit of the Dirac-Maxwell equations in the presence of an external electromagnetic field we obtain an analytical expression of a coherent light-induced mean-field Hamiltonian. The latter exhibits several mechanisms that involve the internal mean fields created by all the electrons and the external electromagnetic field (laser). The role played by the light-induced current density and the light-induced second-order charge density acting as sources in Maxwells equations are clarified. In particular, we identify clearly four different mechanisms involving the spins that may play an important role in coherent ultrafast spin dynamics.



rate research

Read More

We demonstrate the possibility of a self-consistent characterization of the photon-number statistics of a light field by using photoemissive detectors with internal gain simply endowed with linear input/output responses. The method can be applied to both microscopic and mesoscopic photon-number regimes. The detectors must operate in the linear range without need of photon-counting capabilities.
Hybrid spin-optomechanical quantum systems offer high flexibility, integrability and applicability for quantum science and technology. Particularly, on-chip surface acoustic waves (SAWs) can efficiently drive spin transitions in the ground states (GSs) of atomic-scale, color centre qubits, which are forbidden in case of the more frequently used electromagnetic fields. Here, we demonstrate that strain-induced spin interactions within their optically excited state (ES) can exceed by two orders of magnitude the ones within the GS. This gives rise to novel physical phenomena, such as the acoustically induced coherent spin trapping (CST) unvealed here. The CST manifests itself as the spin preservation along one particular direction under the coherent drive of the GS and ES by the same acoustic field. Our findings provide new opportunities for the coherent control of spin qubits with dynamically generated strain fields that can lead towards the realization of future spin-acoustic quantum devices.
The interference between coherent and squeezed vacuum light can produce path entangled states with very high fidelities. We show that the phase sensitivity of the above interferometric scheme with parity detection saturates the quantum Cramer-Rao bound, which reaches the Heisenberg-limit when the coherent and squeezed vacuum light are mixed in roughly equal proportions. For the same interferometric scheme, we draw a detailed comparison between parity detection and a symmetric-logarithmic-derivative-based detection scheme suggested by Ono and Hofmann.
We present an analysis of the general relativistic Boltzmann equation for radiation, appropriate to the case where particles and photons interact through Thomson scattering, and derive the radiation energy-momentum tensor in the diffusion limit, with viscous terms included. Contrary to relativistic generalizations of the viscous stress tensor that appear in the literature, we find that the stress tensor should contain a correction to the comoving energy density proportional to the divergence of the four-velocity, as well as a finite bulk viscosity. These modifications are consistent with the framework of radiation hydrodynamics in the limit of large optical depth, and do not depend on thermodynamic arguments such as the assignment of a temperature to the zeroth-order photon distribution. We perform a perturbation analysis on our equations and demonstrate that, as long as the wave numbers do not probe scales smaller than the mean free path of the radiation, the viscosity contributes only decaying, i.e., stable, corrections to the dispersion relations. The astrophysical applications of our equations, including jets launched from super-Eddington tidal disruption events and those from collapsars, are discussed and will be considered further in future papers.
A broad class of forces P is identified for which the Abraham-Lorentz-Dirac (ALD) equation has common solutions with a Newton type equation that do not present pre-acceleration or escape into infinity (runaway behavior). It is argued that the given class can approximate with arbitrary precision any continuous or piecewise continuous force. For the general case of such forces, the existence of common solutions to the ALD and the Newton type equations in terms of generalized functions defined on P is argued. The existence of such solutions is explicitly demonstrated here for the important example of the instantly connected constant force. Expressions for the position and velocity are defined by generalized functions with point support in the initial time in which force is applied. It follows that both, the velocity as the coordinates are discontinuous at the support point, at the instant where the force is applied. The unusual discontinuity in the position that appears is justified by the presence of impulsive forces that determine instantaneous jumps in the coordinates. This result is compatible with the non relativistic limit under consideration and is expected to be explained after a further relativistic generalization of the discussion here. The solution obtained for this class of forces reproduces the one obtained by A. Yaghjian, from his equations for the extended particle moving between the plates of a capacitor. This outcome suggests the possible link or equivalence between this two analysis. The common solution of the Newton like equations and the ALD ones for the case of a constant and homogeneous magnetic field is also presented. The extension the results to a relativistic limit will be investigated in future works.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا