No Arabic abstract
The most observable leakage radiation from an advanced civilization may well be from the use of power beaming to transfer energy and accelerate spacecraft. Applications suggested for power beaming involve launching spacecraft to orbit, raising satellites to a higher orbit, and interplanetary concepts involving space-to-space transfers of cargo or passengers. We also quantify beam-driven launch to the outer solar system, interstellar precursors and ultimately starships. We estimate the principal observable parameters of power beaming leakage. Extraterrestrial civilizations would know their power beams could be observed, and so could put a message on the power beam and broadcast it for our receipt at little additional energy or cost. By observing leakage from power beams we may find a message embedded on the beam. Recent observations of the anomalous star KIC8462852 by the Allen Telescope Array set some limits on extraterrestrial power beaming in that system. We show that most power beaming applications commensurate with those suggested for our solar system would be detectable if using the frequency range monitored by the ATA, and so the lack of detection is a meaningful, if modest, constraint on extraterrestrial power beaming in that system. Until more extensive observations are made, the limited observation time and frequency coverage are not sufficiently broad in frequency and duration to produce firm conclusions. Such beams would be visible over large interstellar distances. This implies a new approach to the SETI search: Instead of focusing on narrowband beacon transmissions generated by another civilization, look for more powerful beams with much wider bandwidth. This requires a new approach for their discovery by telescopes on Earth. Further studies of power beaming applications should be done, which could broaden the parameter space of observable features we have discussed here.
The primary challenge of rocket propulsion is the burden of needing to accelerate the spacecrafts own fuel, resulting in only a logarithmic gain in maximum speed as propellant is added to the spacecraft. Light sails offer an attractive alternative in which fuel is not carried by the spacecraft, with acceleration being provided by an external source of light. By artificially illuminating the spacecraft with beamed radiation, speeds are only limited by the area of the sail, heat resistance of its material, and power use of the accelerating apparatus. In this paper, we show that leakage from a light sail propulsion apparatus in operation around a solar system analogue would be detectable. To demonstrate this, we model the launch and arrival of a microwave beam-driven light sail constructed for transit between planets in orbit around a single star, and find an optimal beam frequency on the order of tens of GHz. Leakage from these beams yields transients with flux densities of Jy and durations of tens of seconds at 100 pc. Because most travel within a planetary system would be conducted between the habitable worlds within that system, multiply-transiting exoplanetary systems offer the greatest chance of detection, especially when the planets are in projected conjunction as viewed from Earth. If interplanetary travel via beam-driven light sails is commonly employed in our galaxy, this activity could be revealed by radio follow-up of nearby transiting exoplanetary systems. The expected signal properties define a new strategy in the search for extraterrestrial intelligence (SETI).
In the spirit of Trimbles ``Astrophysics in XXXX series, I very briefly and subjectively review developments in SETI in 2020. My primary focus is 74 papers and books published or made public in 2020, which I sort into six broad categories: results from actual searches, new search methods and instrumentation, target and frequency seleciton, the development of technosignatures, theory of ETIs, and social aspects of SETI.
Much work in SETI has focused on detecting radio broadcasts due to extraterrestrial intelligence, but there have been limited efforts to transmit messages over interstellar distances. As a check if such messages can be interpreted once received, we conducted a blind test. One of us coded a 75-kilobit message, which the other then attempted to decipher. The decryption was accurate, supporting the message design as a general structure for communicating with aliens capable of detecting narrow-band radio transmissions.
Side channels represent a broad class of security vulnerabilities that have been demonstrated to exist in many applications. Because completely eliminating side channels often leads to prohibitively high overhead, there is a need for a principled trade-off between cost and leakage. In this paper, we make a case for the use of maximal leakage to analyze such trade-offs. Maximal leakage is an operationally interpretable leakage metric designed for side channels. We present the most useful theoretical properties of maximal leakage from previous work and demonstrate empirically that conventional metrics such as mutual information and channel capacity underestimate the threat posed by side channels whereas maximal leakage does not. We also study the cost-leakage trade-off as an optimization problem using maximal leakage. We demonstrate that not only can this problem be represented as a linear program, but also that optimal protection can be achieved using a combination of at most two deterministic schemes.
We applied the Koch snowflake fractal antenna in planning calibration of the Five-hundred-meter Aperture Spherical radio Telescope (FAST), hypothesizing second-order fractal primary reflectors can optimize the orientated sensitivity of the telescope. Meanwhile, on the grounds of NASA Science Working Group Report in 1984, we reexamine the strategy of Search for Extraterrestrial Intelligence (SETI). A mathematical analysis of the radar equation will be performed in the first section, aiming to make it convenient to design a receiver system that can detect activities of an extraterrestrial civilization, according to the observable region of the narrowband. Taking advantage of the inherent potential of FAST, we simulate the theoretical detection of a Kardashev Type I civilization by a snowflake-selected reflecting area.