Do you want to publish a course? Click here

Robust Influence Maximization

86   0   0.0 ( 0 )
 Added by Xinran He
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Uncertainty about models and data is ubiquitous in the computational social sciences, and it creates a need for robust social network algorithms, which can simultaneously provide guarantees across a spectrum of models and parameter settings. We begin an investigation into this broad domain by studying robust algorithms for the Influence Maximization problem, in which the goal is to identify a set of k nodes in a social network whose joint influence on the network is maximized. We define a Robust Influence Maximization framework wherein an algorithm is presented with a set of influence functions, typically derived from different influence models or different parameter settings for the same model. The different parameter settings could be derived from observed cascades on different topics, under different conditions, or at different times. The algorithms goal is to identify a set of k nodes who are simultaneously influential for all influence functions, compared to the (function-specific) optimum solutions. We show strong approximation hardness results for this problem unless the algorithm gets to select at least a logarithmic factor more seeds than the optimum solution. However, when enough extra seeds may be selected, we show that techniques of Krause et al. can be used to approximate the optimum robust influence to within a factor of 1 - 1/e. We evaluate this bicriteria approximation algorithm against natural heuristics on several real-world data sets. Our experiments indicate that the worst-case hardness does not necessarily translate into bad performance on real-world data sets; all algorithms perform fairly well.



rate research

Read More

455 - Xinran He , Guojie Song , Wei Chen 2011
In many real-world situations, different and often opposite opinions, innovations, or products are competing with one another for their social influence in a networked society. In this paper, we study competitive influence propagation in social networks under the competitive linear threshold (CLT) model, an extension to the classic linear threshold model. Under the CLT model, we focus on the problem that one entity tries to block the influence propagation of its competing entity as much as possible by strategically selecting a number of seed nodes that could initiate its own influence propagation. We call this problem the influence blocking maximization (IBM) problem. We prove that the objective function of IBM in the CLT model is submodular, and thus a greedy algorithm could achieve 1-1/e approximation ratio. However, the greedy algorithm requires Monte-Carlo simulations of competitive influence propagation, which makes the algorithm not efficient. We design an efficient algorithm CLDAG, which utilizes the properties of the CLT model, to address this issue. We conduct extensive simulations of CLDAG, the greedy algorithm, and other baseline algorithms on real-world and synthetic datasets. Our results show that CLDAG is able to provide best accuracy in par with the greedy algorithm and often better than other algorithms, while it is two orders of magnitude faster than the greedy algorithm.
Influence Maximization is a NP-hard problem of selecting the optimal set of influencers in a network. Here, we propose two new approaches to influence maximization based on two very different metrics. The first metric, termed Balanced Index (BI), is fast to compute and assigns top values to two kinds of nodes: those with high resistance to adoption, and those with large out-degree. This is done by linearly combining three properties of a node: its degree, susceptibility to new opinions, and the impact its activation will have on its neighborhood. Controlling the weights between those three terms has a huge impact on performance. The second metric, termed Group Performance Index (GPI), measures performance of each node as an initiator when it is a part of randomly selected initiator set. In each such selection, the score assigned to each teammate is inversely proportional to the number of initiators causing the desired spread. These two metrics are applicable to various cascade models; here we test them on the Linear Threshold Model with fixed and known thresholds. Furthermore, we study the impact of network degree assortativity and threshold distribution on the cascade size for metrics including ours. The results demonstrate our two metrics deliver strong performance for influence maximization.
Influence Maximization (IM) aims to maximize the number of people that become aware of a product by finding the `best set of `seed users to initiate the product advertisement. Unlike prior arts on static social networks containing fixed number of users, we undertake the first study of IM in more realistic evolving networks with temporally growing topology. The task of evolving IM ({bfseries EIM}), however, is far more challenging over static cases in the sense that seed selection should consider its impact on future users and the probabilities that users influence one another also evolve over time. We address the challenges through $mathbb{EIM}$, a newly proposed bandit-based framework that alternates between seed nodes selection and knowledge (i.e., nodes growing speed and evolving influences) learning during network evolution. Remarkably, $mathbb{EIM}$ involves three novel components to handle the uncertainties brought by evolution:
Several behavioral, social, and public health interventions, such as suicide/HIV prevention or community preparedness against natural disasters, leverage social network information to maximize outreach. Algorithmic influence maximization techniques have been proposed to aid with the choice of peer leaders or influencers in such interventions. Yet, traditional algorithms for influence maximization have not been designed with these interventions in mind. As a result, they may disproportionately exclude minority communities from the benefits of the intervention. This has motivated research on fair influence maximization. Existing techniques come with two major drawbacks. First, they require committing to a single fairness measure. Second, these measures are typically imposed as strict constraints leading to undesirable properties such as wastage of resources. To address these shortcomings, we provide a principled characterization of the properties that a fair influence maximization algorithm should satisfy. In particular, we propose a framework based on social welfare theory, wherein the cardinal utilities derived by each community are aggregated using the isoelastic social welfare functions. Under this framework, the trade-off between fairness and efficiency can be controlled by a single inequality aversion design parameter. We then show under what circumstances our proposed principles can be satisfied by a welfare function. The resulting optimization problem is monotone and submodular and can be solved efficiently with optimality guarantees. Our framework encompasses as special cases leximin and proportional fairness. Extensive experiments on synthetic and real world datasets including a case study on landslide risk management demonstrate the efficacy of the proposed framework.
Influence overlap is a universal phenomenon in influence spreading for social networks. In this paper, we argue that the redundant influence generated by influence overlap cause negative effect for maximizing spreading influence. Firstly, we present a theoretical method to calculate the influence overlap and record the redundant influence. Then in term of eliminating redundant influence, we present two algorithms, namely, Degree-Redundant-Influence (DRS) and Degree-Second-Neighborhood (DSN) for multiple spreaders identification. The experiments for four empirical social networks successfully verify the methods, and the spreaders selected by the DSN algorithm show smaller degree and k-core values.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا