No Arabic abstract
Datasets are growing not just in size but in complexity, creating a demand for rich models and quantification of uncertainty. Bayesian methods are an excellent fit for this demand, but scaling Bayesian inference is a challenge. In response to this challenge, there has been considerable recent work based on varying assumptions about model structure, underlying computational resources, and the importance of asymptotic correctness. As a result, there is a zoo of ideas with few clear overarching principles. In this paper, we seek to identify unifying principles, patterns, and intuitions for scaling Bayesian inference. We review existing work on utilizing modern computing resources with both MCMC and variational approximation techniques. From this taxonomy of ideas, we characterize the general principles that have proven successful for designing scalable inference procedures and comment on the path forward.
Recent years have witnessed an upsurge of interest in employing flexible machine learning models for instrumental variable (IV) regression, but the development of uncertainty quantification methodology is still lacking. In this work we present a scalable quasi-Bayesian procedure for IV regression, building upon the recently developed kernelized IV models. Contrary to Bayesian modeling for IV, our approach does not require additional assumptions on the data generating process, and leads to a scalable approximate inference algorithm with time cost comparable to the corresponding point estimation methods. Our algorithm can be further extended to work with neural network models. We analyze the theoretical properties of the proposed quasi-posterior, and demonstrate through empirical evaluation the competitive performance of our method.
Bayesian inference via standard Markov Chain Monte Carlo (MCMC) methods is too computationally intensive to handle large datasets, since the cost per step usually scales like $Theta(n)$ in the number of data points $n$. We propose the Scalable Metropolis-Hastings (SMH) kernel that exploits Gaussian concentration of the posterior to require processing on average only $O(1)$ or even $O(1/sqrt{n})$ data points per step. This scheme is based on a combination of factorized acceptance probabilities, procedures for fast simulation of Bernoulli processes, and control variate ideas. Contrary to many MCMC subsampling schemes such as fixed step-size Stochastic Gradient Langevin Dynamics, our approach is exact insofar as the invariant distribution is the true posterior and not an approximation to it. We characterise the performance of our algorithm theoretically, and give realistic and verifiable conditions under which it is geometrically ergodic. This theory is borne out by empirical results that demonstrate overall performance benefits over standard Metropolis-Hastings and various subsampling algorithms.
Bayesian optimization is an effective methodology for the global optimization of functions with expensive evaluations. It relies on querying a distribution over functions defined by a relatively cheap surrogate model. An accurate model for this distribution over functions is critical to the effectiveness of the approach, and is typically fit using Gaussian processes (GPs). However, since GPs scale cubically with the number of observations, it has been challenging to handle objectives whose optimization requires many evaluations, and as such, massively parallelizing the optimization. In this work, we explore the use of neural networks as an alternative to GPs to model distributions over functions. We show that performing adaptive basis function regression with a neural network as the parametric form performs competitively with state-of-the-art GP-based approaches, but scales linearly with the number of data rather than cubically. This allows us to achieve a previously intractable degree of parallelism, which we apply to large scale hyperparameter optimization, rapidly finding competitive models on benchmark object recognition tasks using convolutional networks, and image caption generation using neural language models.
We introduce a Bayesian approach to discovering patterns in structurally complex processes. The proposed method of Bayesian Structural Inference (BSI) relies on a set of candidate unifilar HMM (uHMM) topologies for inference of process structure from a data series. We employ a recently developed exact enumeration of topological epsilon-machines. (A sequel then removes the topological restriction.) This subset of the uHMM topologies has the added benefit that inferred models are guaranteed to be epsilon-machines, irrespective of estimated transition probabilities. Properties of epsilon-machines and uHMMs allow for the derivation of analytic expressions for estimating transition probabilities, inferring start states, and comparing the posterior probability of candidate model topologies, despite process internal structure being only indirectly present in data. We demonstrate BSIs effectiveness in estimating a processs randomness, as reflected by the Shannon entropy rate, and its structure, as quantified by the statistical complexity. We also compare using the posterior distribution over candidate models and the single, maximum a posteriori model for point estimation and show that the former more accurately reflects uncertainty in estimated values. We apply BSI to in-class examples of finite- and infinite-order Markov processes, as well to an out-of-class, infinite-state hidden process.
Model-based approaches bear great promise for decision making of agents interacting with the physical world. In the context of spatial environments, different types of problems such as localisation, mapping, navigation or autonomous exploration are typically adressed with specialised methods, often relying on detailed knowledge of the system at hand. We express these tasks as probabilistic inference and planning under the umbrella of deep sequential generative models. Using the frameworks of variational inference and neural networks, our method inherits favourable properties such as flexibility, scalability and the ability to learn from data. The method performs comparably to specialised state-of-the-art methodology in two distinct simulated environments.