Abundances of 59Co and 59Ni in the cosmic ray flux


Abstract in English

Two main hypotheses for the origin of Galactic cosmic rays are the supernova and superbubble origin hypotheses. We analyse the evidence for the superbubble hypothesis provided by the measurements of the relativive abundances of isotopes of cobalt and nickel in the cosmic ray flux. We compare the measured upper limit on the abundance of 59Ni in the cosmic ray flux with the 59Ni abundance predictions of the up-to-date stellar evolution models. Non-detection of 59Ni in the cosmic ray flux has previously been attributed to a large time delay of the order of 1e5 yr between the moment of supernova explosion and the onset of particle acceleration process. This large time delay was considered as an argument in favour of the superbubble scenario. We show that the recent calculation of the 59Ni yield of massive stars, which takes into account the initial mass range up to 120 solar masses and includes stellar rotation, results in prediction of low 59Ni abundance relative to its decay product 59Co. The predicted abundance is consistent with the upper bound on 59Ni abundance in the cosmic ray flux for the supernova parameters assumed. This result removes the necessity of decay of 59Ni in the time interval between the supernova explosion and the onset of acceleration process and restores the consistency of measurements of 59Ni / 59Co abundances with the supernova hypothesis of the CR origin.

Download