Segmentation Rectification for Video Cutout via One-Class Structured Learning


Abstract in English

Recent works on interactive video object cutout mainly focus on designing dynamic foreground-background (FB) classifiers for segmentation propagation. However, the research on optimally removing errors from the FB classification is sparse, and the errors often accumulate rapidly, causing significant errors in the propagated frames. In this work, we take the initial steps to addressing this problem, and we call this new task emph{segmentation rectification}. Our key observation is that the possibly asymmetrically distributed false positive and false negative errors were handled equally in the conventional methods. We, alternatively, propose to optimally remove these two types of errors. To this effect, we propose a novel bilayer Markov Random Field (MRF) model for this new task. We also adopt the well-established structured learning framework to learn the optimal model from data. Additionally, we propose a novel one-class structured SVM (OSSVM) which greatly speeds up the structured learning process. Our method naturally extends to RGB-D videos as well. Comprehensive experiments on both RGB and RGB-D data demonstrate that our simple and effective method significantly outperforms the segmentation propagation methods adopted in the state-of-the-art video cutout systems, and the results also suggest the potential usefulness of our method in image cutout system.

Download