Theoretical predictions and recent experimental results suggest one can engineer spin Hall effect in graphene by enhancing the spin-orbit coupling in the vicinity of an impurity. We use a Chebyshev expansion of the Kubo-Bastin formula to compute the spin conductivity tensor for a tight-binding model of graphene with randomly distributed impurities absorbed on top of carbon atoms. We model the impurity-induced spin-orbit coupling with a graphene-only Hamiltonian that takes into account three different contributions~cite{Gmitra2013} and show how the spin Hall and longitudinal conductivities depend on the strength of each spin-orbit coupling and the concentration of impurities. Additionally, we calculate the real-space projection of the density of states in the vicinity of the Dirac point for single and multiple impurities and correlate these results with the conductivity calculations.