Do you want to publish a course? Click here

Asymptotics of scalar waves on long-range asymptotically Minkowski spaces

128   0   0.0 ( 0 )
 Added by Dean Baskin
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We show the existence of the full compound asymptotics of solutions to the scalar wave equation on long-range non-trapping Lorentzian manifolds modeled on the radial compactification of Minkowski space. In particular, we show that there is a joint asymptotic expansion at null and timelike infinity for forward solutions of the inhomogeneous equation. In two appendices we show how these results apply to certain spacetimes whose null infinity is modeled on that of the Kerr family. In these cases the leading order logarithmic term in our asymptotic expansions at null infinity is shown to be nonzero.



rate research

Read More

141 - Dean Baskin , Andras Vasy , 2012
We consider a non-trapping $n$-dimensional Lorentzian manifold endowed with an end structure modeled on the radial compactification of Minkowski space. We find a full asymptotic expansion for tempered forward solutions of the wave equation in all asymptotic regimes. The rates of decay seen in the asymptotic expansion are related to the resonances of a natural asymptotically hyperbolic problem on the northern cap of the compactification. For small perturbations of Minkowski space that fit into our framework, we show a rate of decay that improves on the Klainerman--Sobolev estimates.
We prove that both the Laplacian on functions, and the Lichnerowicz Laplacian on symmetric 2-tensors with respect to asymptotically hyperbolic metrics, are sectorial maps in weighted Holder spaces. As an application, the machinery of analytic semigroups then applies to yield well-posedness results for parabolic evolution equations in these spaces.
160 - Andras Vasy 2007
In this paper we obtain the asymptotic behavior of solutions of the Klein-Gordon equation on Lorentzian manifolds $(X^circ,g)$ which are de Sitter-like at infinity. Such manifolds are Lorentzian analogues of the so-called Riemannian conformally compact (or asymptotically hyperbolic) spaces. Under global assumptions on the (null)bicharacteristic flow, namely that the boundary of the compactification X is a union of two disjoint manifolds, Y+ and Y-, and each bicharacteristic converges to one of these two manifolds as the parameter along the bicharacteristic goes to plus infinity, and to the other manifold as the parameter goes to minus infinity, we also define the scattering operator, and show that it is a Fourier integral operator associated to the bicharacteristic flow from Y+ to Y-.
103 - Andras Vasy 2019
We use a Lagrangian perspective to show the limiting absorption principle on Riemannian scattering, i.e. asymptotically conic, spaces, and their generalizations. More precisely we show that, for non-zero spectral parameter, the `on spectrum, as well as the `off-spectrum, spectral family is Fredholm in function spaces which encode the Lagrangian regularity of generalizations of `outgoing spherical waves of scattering theory, and indeed this persists in the `physical half plane.
80 - Laurent Michel 2021
We study the Metropolis algorithm on a bounded connected domain $Omega$ of the euclidean space with proposal kernel localized at a small scale $h > 0$. We consider the case of a domain $Omega$ that may have cusp singularities. For small values of the parameter $h$ we prove the existence of a spectral gap $g(h)$ and study the behavior of $g(h)$ when $h$ goes to zero. As a consequence, we obtain exponentially fast return to equilibrium in total variation distance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا