We propose a microscopic model to study the avalanche problem of insulating glass deformed by external static uniform strain below $T=60$K. We use three-dimensional real-space renormalization procedure to carry out the glass mechanical susceptibility at macroscopic length scale. We prove the existence of irreversible stress drops in amorphous materials, corresponding to the steep positive-negative transitions in glass mechanical susceptibility. We also obtain the strain directions in which the glass system is brittle. The irreversible stress drops in glass essentially come from non-elastic stress-stress interaction which is generated by virtual phonon exchange process.