Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates


Abstract in English

Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal-insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is an intrinsic local property, set by surface morphology and stable across multiple temperature cycles. Our data provides new insights into the MIT of heteroepitaxial nickelates and points to a rich, nanoscale phenomenology in this strongly correlated material.

Download