No Arabic abstract
We explore planetary migration scenarios for formation of high inclination Neptune Trojans (NTs) and how they are affected by the planetary migration of Neptune and Uranus. If Neptune and Uranuss eccentricity and inclination were damped during planetary migration, then their eccentricities and inclinations were higher prior and during migration than their current values. Using test particle integrations we study the stability of primordial NTs, objects that were initially Trojans with Neptune prior to migration. We also study Trans-Neptunian objects captured into resonance with Neptune and becoming NTs during planet migration. We find that most primordial NTs were unstable and lost if eccentricity and inclination damping took place during planetary migration. With damping, secular resonances with Neptune can increase a low eccentricity and inclination population of Trans-Neptunian objects increasing the probability that they are captured into 1:1 resonance with Neptune, becoming high inclination NTs. We suggest that the resonant trapping scenario is a promising and more effective mechanism explaining the origin of NTs that is particularly effective if Uranus and Neptune experienced eccentricity and inclination damping during planetary migration.
The minor planets on orbits that are dynamically stable in Neptunes 1:1 resonance on Gyr timescales were likely emplaced by Neptunes outward migration. We explore the intrinsic libration amplitude, eccentricity, and inclination distribution of Neptunes stable Trojans, using the detections and survey efficiency of the Outer Solar System Origins Survey (OSSOS) and Pan-STARRS1. We find that the libration amplitude of the stable Neptunian Trojan population can be well modeled as a Rayleigh distribution with a libration amplitude width $sigma_{A_phi}$ of 15$^circ$. When taken as a whole, the Neptune Trojan population can be acceptably modeled with a Rayleigh eccentricity distribution of width $sigma_e$ of 0.045 and a typical sin(i) x Gaussian inclination distribution with a width $sigma_i$ of 14 +/- 2 degrees. However, these distributions are only marginally acceptable. This is likely because, even after accounting for survey detection biases, the known large Hr < 8 and small Hr >= 8 Neptune Trojans appear to have markedly different eccentricities and inclinations. We propose that like the classical Kuiper belt, the stable intrinsic Neptunian Trojan population have dynamically `hot and dynamically `cold components to its eccentricity/inclination distribution, with $sigma_{e-cold}$ ~ 0.02 / $sigma_{i-cold}$ ~ 6$^circ$ and $sigma_{e-hot}$~ 0.05 / $sigma_{i-hot}$ ~ 18$^circ$. In this scenario, the `cold L4 Neptunian Trojan population lacks the Hr >= 8 members and has 13 +11/-6 `cold Trojans with Hr < 8. On the other hand, the `hot L4 Neptunian Trojan population has 136 +57/-48 Trojans with Hr < 10 -- a population 2.4 times greater than that of the L4 Jovian Trojans in the same luminosity range.
We determine the orbital eccentricities of individual small Kepler planets, through a combination of asteroseismology and transit light-curve analysis. We are able to constrain the eccentricities of 51 systems with a single transiting planet, which supplement our previous measurements of 66 planets in multi-planet systems. Through a Bayesian hierarchical analysis, we find evidence that systems with only one detected transiting planet have a different eccentricity distribution than systems with multiple detected transiting planets. The eccentricity distribution of the single-transiting systems is well described by the positive half of a zero-mean Gaussian distribution with a dispersion $sigma_e = 0.32 pm 0.06$, while the multiple-transit systems are consistent with $sigma_e = 0.083^{+0.015}_{-0.020}$. A mixture model suggests a fraction of $0.76^{+0.21}_{-0.12}$ of single-transiting systems have a moderate eccentricity, represented by a Rayleigh distribution that peaks at $0.26^{+0.04}_{-0.06}$. This finding may reflect differences in the formation pathways of systems with different numbers of transiting planets. We investigate the possibility that eccentricities are self-excited in closely packed planetary systems, as well as the influence of long-period giant companion planets. We find that both mechanisms can qualitatively explain the observations. We do not find any evidence for a correlation between eccentricity and stellar metallicity, as has been seen for giant planets. Neither do we find any evidence that orbital eccentricity is linked to the detection of a companion star. Along with this paper we make available all of the parameters and uncertainties in the eccentricity distributions, as well as the properties of individual systems, for use in future studies.
During the process of planet formation, the planet-discs interactions might excite (or damp) the orbital eccentricity of the planet. In this paper, we present two long ($tsim 3times 10^5$ orbits) numerical simulations: (a) one (with a relatively light disc, $M_{rm d}/M_{rm p}=0.2$) where the eccentricity initially stalls before growing at later times and (b) one (with a more massive disc, $M_{rm d}/M_{rm p}=0.65$) with fast growth and a late decrease of the eccentricity. We recover the well-known result that a more massive disc promotes a faster initial growth of the planet eccentricity. However, at late times the planet eccentricity decreases in the massive disc case, but increases in the light disc case. Both simulations show periodic eccentricity oscillations superimposed on a growing/decreasing trend and a rapid transition between fast and slow pericentre precession. The peculiar and contrasting evolution of the eccentricity of both planet and disc in the two simulations can be understood by invoking a simple toy model where the disc is treated as a second point-like gravitating body, subject to secular planet-planet interaction and eccentricity pumping/damping provided by the disc. We show how the counterintuitive result that the more massive simulation produces a lower planet eccentricity at late times can be understood in terms of the different ratios of the disc-to-planet angular momentum in the two simulations. In our interpretation, at late times the planet eccentricity can increase more in low-mass discs rather than in high-mass discs, contrary to previous claims in the literature.
Transition discs are expected to be a natural outcome of the interplay between photoevaporation (PE) and giant planet formation. Massive planets reduce the inflow of material from the outer to the inner disc, therefore triggering an earlier onset of disc dispersal due to PE through a process known as Planet-Induced PhotoEvaporation (PIPE). In this case, a cavity is formed as material inside the planetary orbit is removed by PE, leaving only the outer disc to drive the migration of the giant planet. We investigate the impact of PE on giant planet migration and focus specifically on the case of transition discs with an evacuated cavity inside the planet location. This is important for determining under what circumstances PE is efficient at halting the migration of giant planets, thus affecting the final orbital distribution of a population of planets. For this purpose, we use 2D FARGO simulations to model the migration of giant planets in a range of primordial and transition discs subject to PE. The results are then compared to the standard prescriptions used to calculate the migration tracks of planets in 1D planet population synthesis models. The FARGO simulations show that once the disc inside the planet location is depleted of gas, planet migration ceases. This contradicts the results obtained by the impulse approximation, which predicts the accelerated inward migration of planets in discs that have been cleared inside the planetary orbit. These results suggest that the impulse approximation may not be suitable for planets embedded in transition discs. A better approximation that could be used in 1D models would involve halting planet migration once the material inside the planetary orbit is depleted of gas and the surface density at the 3:2 mean motion resonance location in the outer disc reaches a threshold value of $0.01,mathrm{g,cm^{-2}}$.
Planet migration in protoplanetary discs plays an important role in the longer term evolution of planetary systems, yet we currently have no direct observational test to determine if a planet is migrating in its gaseous disc. We explore the formation and evolution of dust rings - now commonly observed in protoplanetary discs by ALMA - in the presence of relatively low mass (12-60 Earth masses) migrating planets. Through two dimensional hydrodynamical simulations using gas and dust we find that the importance of perturbations in the pressure profile interior and exterior to the planet varies for different particle sizes. For small sizes a dust enhancement occurs interior to the planet, whereas it is exterior to it for large particles. The transition between these two behaviours happens when the dust drift velocity is comparable to the planet migration velocity. We predict that an observational signature of a migrating planet consists of a significant outwards shift of an observed midplane dust ring as the wavelength is increased.