The uncertainty principle is a fundamental principle in quantum physics. It implies that the measurement outcomes of two incompatible observables can not be predicted simultaneously. In quantum information theory, this principle can be expressed in terms of entropic measures. Berta emph{et al}. [href{http://www.nature.com/doifinder/10.1038/nphys1734}{ Nature Phys. 6, 659 (2010) }] have indicated that uncertainty bound can be altered by considering a particle as a quantum memory correlating with the primary particle. In this article, we obtain a lower bound for entropic uncertainty in the presence of a quantum memory by adding an additional term depending on Holevo quantity and mutual information. We conclude that our lower bound will be tighten with respect to that of Berta emph{et al.}, when the accessible information about measurements outcomes is less than the mutual information of the joint state. Some examples have been investigated for which our lower bound is tighter than the Bertas emph{et al.} lower bound. Using our lower bound, a lower bound for the entanglement of formation of bipartite quantum states has obtained, as well as an upper bound for the regularized distillable common randomness.