No Arabic abstract
Aluminum borohydride (Al(BH$_4$)$_3$) is an example of a promising hydrogen storage material with exceptional hydrogen densities by weight and volume and a low hydrogen desorption temperature. But, unfortunately, its production of diborane (B$_2$H$_6$) gases upon heating to release the hydrogen restricts its practical use. To elucidate this issue, we investigate the properties of a number of metal borohydrides with the same problem and find that the electronegativity of the metal cation is not the best descriptor of diborane production. We show that, instead, the closely related formation enthalpy is a better descriptor and we find that diborane production is an exponential function thereof. We conclude that diborane production is sufficiently suppressed for formation enthalpies of $-$80 kJ/mol BH$_4$ or lower, providing specific design guidelines to tune existing metal borohydrides or synthesize new ones. We then use first-principles methods to study the effects of Sc alloying in Al(BH$_4$)$_3$. Our results for the thermodynamic properties of the Al$_{1-x}$Sc$_x$(BH$_4$)$_3$ alloy clearly show the stabilizing effect of Sc alloying and thus the suppression of diborane production. We conclude that stabilizing Al(BH$_4$)$_3$ and similar borohydrides via alloying or other means is a promising route to suppress diborane production and thus develop viable hydrogen storage materials.
We study the effect of Zn alloying on the hydrogen desorption properties of Mg(BH$_4$)$_2$ using $it{ab initio}$ simulations. In particular, we investigate formation/reaction enthalpies/entropies for a number of compounds and reactions at a wide range of temperatures and Zn concentrations in Mg$_{1-x}$Zn$_x$(BH$_4$)$_2$. Our results show that the thermodynamic stability of the resulting material can be significantly lowered through Zn alloying. We find that e.g. the solid solution Mg$_{2/3}$Zn$_{1/3}$(BH$_4$)$_2$ has a reaction enthalpy for the complete hydrogen desorption of only 25.3 kJ/mol H$_2$$-$a lowering of 15 kJ/mol H$_2$ compared to the pure phase and a corresponding lowering in critical temperature of 123 K. In addition, we find that the enthalpy of mixing is rather small and show that the decrease in reaction enthalpy with Zn concentration is approximately linear.
Crystal chemistry of M(BH4)n, where M is a 2nd-4th period element, is reviewed. It is shown that except certain cases, the BH4 group has a nearly ideal tetrahedral geometry. Corrections of the experimentally determined H-positions, accounting for the displacement of the electron cloud relative to an average nuclear position and for a libration of the BH4 group, are considered. Recent studies of structural evolution with temperature and pressure are reviewed. Some borohydrides involving less electropositive metals (e.g. Mg and Zn) reveal porous structures and dense interpenetrated frameworks, thus resembling metal-organic frameworks (MOFs). Analysis of phase transitions, and the related changes of the coordination geometries for M atoms and BH4 groups, suggests that the directional BH4...M interaction is at the origin of the structural complexity of borohydrides. The ways to influence their stability by chemical modification are discussed.
The object of this study is the kinetic process of solid-liquid first-order phase transition - melting of carbon dioxide CS-I hydrate with various cavity occupation ratios. The work was done within a framework of study on the local structure of water molecules. These include the time depending change of the short-range order at temperatures close to the melting point and comparison with hexagonal ice structure. Using molecular dynamics method, dependencies of the internal energy of the studied systems on the time of heating were found. Jumps in the internal energy of solids in the range at 275-300 K indicate a phase transition. The study of oxygen-oxygen radial distribution and hydrogen-oxygen-oxygen mutual orientation angles between molecules detached at no more than 3.2 angstroms allowed to find the H-bond coordination number of all molecules and full number of H-bonds and showed the instant (less than 1 nanosecond) reorganization of short-range order of all molecules. The structure analysis of every neighbor water molecules pairs showed the ~10-15 percents decrease of H-bond number after the melting whereas all molecules form single long-range hydrogen bond network. The analysis of hydrogen bond network showed the minor changes in the H-bond interaction energy at solid-liquid phase transition.
We employ the Monte-Carlo Basin-Hopping (MC-BH) global optimisation technique with inter- atomic pair potentials to generate low-energy candidates of stoichiometric alumina octomers ((Al$_2$O$_3$)$_8$). The candidate structures are subsequently refined with density functional theory calculations employing hybrid functionals (B3LYP and PBE0) and a large basis set (6-311+G(d)) including a vibrational analysis. We report the discovery of a set of energetically low-lying alumina octomer clusters, including a new global minimum candidate, with shapes that are elongated rather than spherical. We find a stability limit for these and smaller-sized clusters at a temperature of $Tsimeq1300-1450$ K corresponding to a phase transition in liquid alumina.
$beta$-Ga$_2$O$_3$ is a promising ultra-wide bandgap semiconductor whose properties can be further enhanced by alloying with Al. Here, using atomic-resolution scanning transmission electron microscopy (STEM), we find the thermodynamically-unstable $gamma$-phase is a ubiquitous defect in both $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films and doped $beta$-Ga$_2$O$_3$ films grown by molecular beam epitaxy. For undoped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ films we observe $gamma$-phase inclusions between nucleating islands of the $beta$-phase at lower growth temperatures (~400-600 $^{circ}$C). In doped $beta$-Ga$_2$O$_3$, a thin layer of the $gamma$-phase is observed on the surfaces of films grown with a wide range of n-type dopants and dopant concentrations. The thickness of the $gamma$-phase layer was most strongly correlated with the growth temperature, peaking at about 600 $^{circ}$C. Ga interstitials are observed in $beta$-phase, especially near the interface with the $gamma$-phase. By imaging the same region of the surface of a Sn-doped $beta$-(Al$_x$Ga$_{1text{-}x}$)$_2$O$_3$ after ex-situ heating up to 400 $^{circ}$C, a $gamma$-phase region is observed to grow above the initial surface, accompanied by a decrease in Ga interstitials in the $beta$-phase. This suggests that the diffusion of Ga interstitials towards the surface is likely the mechanism for growth of the surface $gamma$-phase, and more generally that the more-open $gamma$-phase may offer diffusion pathways to be a kinetically-favored and early-forming phase in the growth of Ga$_2$O$_3$.