Do you want to publish a course? Click here

Implicitization of Hypersurfaces

43   0   0.0 ( 0 )
 Added by Lorenzo Robbiano
 Publication date 2016
  fields
and research's language is English




Ask ChatGPT about the research

We present new, practical algorithms for the hypersurface implicitization problem: namely, given a parametric description (in terms of polynomials or rational functions) of the hypersurface, find its implicit equation. Two of them are for polynomial parametrizations: one algorithm, ElimTH, has as main step the computation of an elimination ideal via a textit{truncated, homogeneous} Grobner basis. The other algorithm, Direct, computes the implicitization directly using an approach inspired by the generalized Buchberger-Moller algorithm. Either may be used inside the third algorithm, RatPar, to deal with parametrizations by rational functions. Finally we show how these algorithms can be used in a modular approach, algorithm ModImplicit, for avoiding the high costs of arithmetic with rational numbers. We exhibit experimental timings to show the practical efficiency of our new algorithms.



rate research

Read More

We address the description of the tropicalization of families of rational varieties under parametrizations with prescribed support, via curve valuations. We recover and extend results by Sturmfels, Tevelev and Yu for generic coefficients, considering rational parametrizations with non-trivial denominator. The advantage of our point of view is that it can be generalized to deal with non-generic parametrizations. We provide a detailed analysis of the degree of the closed image, based on combinatorial conditions on the relative positions of the supports of the polynomials defining the parametrization. We obtain a new formula and finer bounds on the degree, when the supports of the polynomials are different. We also present a new formula and bounds for the order at the origin in case the closed image is a hypersurface.
The software TrIm offers implementations of tropical implicitization and tropical elimination, as developed by Tevelev and the authors. Given a polynomial map with generic coefficients, TrIm computes the tropical variety of the image. When the image is a hypersurface, the output is the Newton polytope of the defining polynomial. TrIm can thus be used to compute mixed fiber polytopes, including secondary polytopes.
321 - S. Canevari , R. Tojeiro 2015
We address the problem of determining the hypersurfaces $fcolon M^{n} to mathbb{Q}_s^{n+1}(c)$ with dimension $ngeq 3$ of a pseudo-Riemannian space form of dimension $n+1$, constant curvature $c$ and index $sin {0, 1}$ for which there exists another isometric immersion $tilde{f}colon M^{n} to mathbb{Q}^{n+1}_{tilde s}(tilde{c})$ with $tilde{c} eq c$. For $ngeq 4$, we provide a complete solution by extending results for $s=0=tilde s$ by do Carmo and Dajczer and by Dajczer and the second author. Our main results are for the most interesting case $n=3$, and these are new even in the Riemannian case $s=0=tilde s$. In particular, we characterize the solutions that have dimension $n=3$ and three distinct principal curvatures. We show that these are closely related to conformally flat hypersurfaces of $mathbb{Q}_s^{4}(c)$ with three distinct principal curvatures, and we obtain a similar characterization of the latter that improves a theorem by Hertrich-Jeromin. We also derive a Ribaucour transformation for both classes of hypersurfaces, which gives a process to produce a family of new elements of those classes, starting from a given one, in terms of solutions of a linear system of PDEs. This enables us to construct explicit examples of three-dimensional solutions of the problem, as well as new explicit examples of three-dimensional conformally flat hypersurfaces that have three distinct principal curvatures.
In applications like computer aided design, geometric models are often represented numerically as polynomial splines or NURBS, even when they originate from primitive geometry. For purposes such as redesign and isogeometric analysis, it is of interest to extract information about the underlying geometry through reverse engineering. In this work we develop a novel method to determine these primitive shapes by combining clustering analysis with approximate implicitization. The proposed method is automatic and can recover algebraic hypersurfaces of any degree in any dimension. In exact arithmetic, the algorithm returns exact results. All the required parameters, such as the implicit degree of the patches and the number of clusters of the model, are inferred using numerical approaches in order to obtain an algorithm that requires as little manual input as possible. The effectiveness, efficiency and robustness of the method are shown both in a theoretical analysis and in numerical examples implemented in Python.
In the present paper we study geometric structures associated with webs of hypersurfaces. We prove that with any geodesic (n+2)-web on an n-dimensional manifold there is naturally associated a unique projective structure and, provided that one of web foliations is pointed, there is also associated a unique affine structure. The projective structure can be chosen by the claim that the leaves of all web foliations are totally geodesic, and the affine structure by an additional claim that one of web functions is affine. These structures allow us to determine differential invariants of geodesic webs and give geometrically clear answers to some classical problems of the web theory such as the web linearization and the Gronwall theorem.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا