Do you want to publish a course? Click here

On recent SFR calibrations and the constant SFR approximation

52   0   0.0 ( 0 )
 Added by Miguel Cervino
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Star Formation Rate (SFR) inferences are based in the so-called constant SFR approximation, where synthesis models are require to provide a calibration; we aims to study the key points of such approximation to produce accurate SFR inferences. We use the intrinsic algebra used in synthesis models, and we explore how SFR can be inferred from the integrated light without any assumption about the underling Star Formation history (SFH). We show that the constant SFR approximation is actually a simplified expression of more deeper characteristics of synthesis models: It is a characterization of the evolution of single stellar populations (SSPs), acting the SSPs as sensitivity curve over different measures of the SFH can be obtained. As results, we find that (1) the best age to calibrate SFR indices is the age of the observed system (i.e. about 13Gyr for z=0 systems); (2) constant SFR and steady-state luminosities are not requirements to calibrate the SFR; (3) it is not possible to define a SFR single time scale over which the recent SFH is averaged, and we suggest to use typical SFR indices (ionizing flux, UV fluxes) together with no typical ones (optical/IR fluxes) to correct the SFR from the contribution of the old component of the SFH, we show how to use galaxy colors to quote age ranges where the recent component of the SFH is stronger/softer than the older component. Particular values of SFR calibrations are (almost) not affect by this work, but the meaning of what is obtained by SFR inferences does. In our framework, results as the correlation of SFR time scales with galaxy colors, or the sensitivity of different SFR indices to sort and long scale variations in the SFH, fit naturally. In addition, the present framework provides a theoretical guide-line to optimize the available information from data/numerical experiments to improve the accuracy of SFR inferences.



rate research

Read More

We perform an aperture-matched analysis of dust-corrected H$alpha$ and UV SFRs using 303 star-forming galaxies with spectroscopic redshifts $1.36<z_text{spec}<2.66$ from the MOSFIRE Deep Evolution Field (MOSDEF) survey. By combining H$alpha$ and H$beta$ emission line measurements with multi-waveband resolved CANDELS/3D-HST imaging, we directly compare dust-corrected H$alpha$ and UV SFRs, inferred assuming a fixed attenuation curve shape and constant SFHs, within the spectroscopic aperture. Previous studies have found that H$alpha$ and UV SFRs inferred with these assumptions generally agree for typical star-forming galaxies, but become increasingly discrepant for galaxies with higher SFRs ($gtrsim$100 M$_odot$ yr$^{-1}$), with H$alpha$-to-UV SFR ratios being larger for these galaxies. Our analysis shows that this trend persists even after carefully accounting for the apertures over which H$alpha$ and UV-based SFRs (and the nebular and stellar continuum reddening) are derived. Furthermore, our results imply that H$alpha$ SFRs may be higher in the centers of large galaxies (i.e., where there is coverage by the spectroscopic aperture) compared to their outskirts, which could be indicative of inside-out galaxy growth. Overall, we suggest that the persistent difference between nebular and stellar continuum reddening and high H$alpha$-to-UV SFR ratios at the centers of large galaxies may be indicative of a patchier distribution of dust in galaxies with high SFRs.
We present a robust calibration of the 1.4GHz radio continuum star formation rate (SFR) using a combination of the Galaxy And Mass Assembly (GAMA) survey and the Faint Images of the Radio Sky at Twenty-cm (FIRST) survey. We identify individually detected 1.4GHz GAMA-FIRST sources and use a late-type, non-AGN, volume-limited sample from GAMA to produce stellar mass-selected samples. The latter are then combined to produce FIRST-stacked images. This extends the robust parametrisation of the 1.4GHz-SFR relation to faint luminosities. For both the individually detected galaxies and our stacked samples, we compare 1.4GHz luminosity to SFRs derived from GAMA to determine a new 1.4GHz luminosity-to-SFR relation with well constrained slope and normalisation. For the first time, we produce the radio SFR-M* relation over 2 decades in stellar mass, and find that our new calibration is robust, and produces a SFR-M* relation which is consistent with all other GAMA SFR methods. Finally, using our new 1.4GHz luminosity-to-SFR calibration we make predictions for the number of star-forming GAMA sources which are likely to be detected in the upcoming ASKAP surveys, EMU and DINGO.
We derive the SFH of MS galaxies showing how the SFH peak of a galaxy depends on its seed mass at e.g. z=5. Following the MS, galaxies undergo a drastic slow down of their stellar mass growth after reaching the peak of their SFH. According to abundance matching, these masses correspond to hot and massive DM halos which state could results in less efficient gas inflows on the galaxies and thus could be at the origin of the limited stellar mass growth. As a result, galaxies on the MS can enter the passive region of the UVJ diagram while still forming stars. The ability of the classical analytical SFHs to retrieve the SFR of galaxies from SED fitting is studied. Due to mathematical limitations, the exp-declining and delayed SFH struggle to model high SFR which starts to be problematic at z>2. The exp-rising and log-normal SFHs exhibit the opposite behavior with the ability to reach very high SFR, and thus model starburst galaxies, but not low values such as those expected at low redshift for massive galaxies. We show that these four analytical forms recover the SFR of MS galaxies with an error dependent on the model and the redshift. They are, however, sensitive enough to probe small variations of SFR within the MS but all the four fail to recover the SFR of rapidly quenched galaxies. However, these SFHs lead to an artificial gradient of age, parallel to the MS which is not exhibited by a simulated sample. This gradient is also produced on real data, using a sample of GOODS-South galaxies at 1.5<z<1.2. We propose a SFH composed of a delayed form to model the bulk of stellar population plus a flexibility in the recent SFH. This SFH provides very good estimates of the SFR of MS, starbursts, and rapidly quenched galaxies at all z. Furthermore, used on the GOODS-South sample, the age gradient disappears, showing its dependency on the SFH assumption made to perform the SED fitting.
We present a meta-analysis of star-formation rate (SFR) indicators in the GAMA survey, producing 12 different SFR metrics and determining the SFR-M* relation for each. We compare and contrast published methods to extract the SFR from each indicator, using a well-defined local sample of morphologically-selected spiral galaxies, which excludes sources which potentially have large recent changes to their SFR. The different methods are found to yield SFR-M* relations with inconsistent slopes and normalisations, suggesting differences between calibration methods. The recovered SFR-M* relations also have a large range in scatter which, as SFRs of the targets may be considered constant over the different timescales, suggests differences in the accuracy by which methods correct for attenuation in individual targets. We then recalibrate all SFR indicators to provide new, robust and consistent luminosity-to-SFR calibrations, finding that the most consistent slopes and normalisations of the SFR-M* relations are obtained when recalibrated using the radiation transfer method of Popescu et al. These new calibrations can be used to directly compare SFRs across different observations, epochs and galaxy populations. We then apply our calibrations to the GAMA II equatorial dataset and explore the evolution of star-formation in the local Universe. We determine the evolution of the normalisation to the SFR-M* relation from 0 < z < 0.35 - finding consistent trends with previous estimates at 0.3 < z < 1.2. We then provide the definitive z < 0.35 Cosmic Star Formation History, SFR-M* relation and its evolution over the last 3 billion years.
Recent large surveys have found a reversal of the star formation rate (SFR)-density relation at z=1 from that at z=0 (e.g. Elbaz et al.; Cooper et al.), while the sign of the slope of the color-density relation remains unchanged (e.g. Cucciati et al.; Quadri et al.). We use state-of-the-art adaptive mesh refinement cosmological hydrodynamic simulations of a 21x24x20 (Mpc/h)$^3$ region centered on a cluster to examine the SFR-density and color-density relations of galaxies at z=0 and z=1. The local environmental density is defined by the dark matter mass in spheres of radius 1 Mpc/h, and we probe two decades of environmental densities. Our simulations produce a large increase of SFR with density at z=1, as in the observations of Elbaz et al. We also find a significant evolution to z=0, where the SFR-density relation is much flatter. The color-density relation in our simulations is consistent from z=1 to z=0, in agreement with observations. We find that the increase in the median SFR with local density at z=1 is due to a growing population of star-forming galaxies in higher-density environments. At z=0 and z=1 both the SFR and cold gas mass are tightly correlated with the galaxy halo mass, and therefore the correlation between median halo mass and local density is an important cause of the SFR-density relation at both redshifts. We also show that the local density on 1 Mpc/h scales affects galaxy SFRs as much as halo mass at z=0. Finally, we find indications that the role of the 1 Mpc/h scale environment reverses from z=0 to z=1: at z=0 high-density environments depress galaxy SFRs, while at z=1 high-density environments tend to increase SFRs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا