Do you want to publish a course? Click here

Supersaturation and activity-rotation relation in PMS stars: the young Cluster h Per

45   0   0.0 ( 0 )
 Added by Costanza Argiroffi
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The magnetic activity of late-type MS stars is characterized by different regimes, and their activity levels are well described by Ro, the ratio between P_rot and the convective turnover time. Very young PMS stars show, similarly to MS stars, intense magnetic activity. However they do not show clear activity-rotation trends, and it still debated which stellar parameters determine their magnetic activity levels. To bridge the gap between MS and PMS stars, we studied the activity-rotation relation in the young cluster h Per, a ~13 Myr old cluster, that contains both fast and slow rotators, whose members have ended their accretion phase and have already developed a radiative core. It offers us the opportunity to study the activity level of intermediate-age PMS stars with different rotational velocities, excluding any interactions with the circumstellar environment. We constrained the magnetic activity levels of h Per members measuring their X-ray emission from a Chandra observation, while P_rot were obtained by Moraux et al. (2013). We collected a final catalog of 414 h Per members with known P_rot, T_eff, M_star, with 169 of them having also detected X-ray emission. We found that h Per members, with 1.0 M_sun < M_star < 1.4 M_sun, display different activity regimes: fast rotators show supersaturation, while slower rotators have activity levels compatible to the non-saturated regime. At 13 Myr h Per is therefore the youngest cluster showing activity-rotation regimes analogous to that of MS stars, indicating that, at this age, magnetic field production is likely regulated by the alpha-Omega type dynamo. Moreover we observed that supersaturation is better described by P_rot than Ro, and that the observed patterns are compatible with the hypothesis of centrifugal stripping. In this scenario we inferred that coronae can produce structures as large as ~2 R_star above the stellar surface.



rate research

Read More

We present a detailed study of the two Sun-like stars KIC 7985370 and KIC 7765135, aimed at determining their activity level, spot distribution, and differential rotation. Both stars were discovered by us to be young stars and were observed by the NASA Kepler mission. The stellar parameters (vsini, spectral type, Teff, log g, and [Fe/H]) were derived from optical spectroscopy which allowed us also to study the chromospheric activity from the emission in the core of Halpha and CaII IRT lines. The high-precision Kepler photometric data spanning over 229 days were then fitted with a robust spot model. Model selection and parameter estimation are performed in a Bayesian manner, using a Markov chain Monte Carlo method. Both stars came out to be Sun-like with an age of about 100-200 Myr, based on their lithium content and kinematics. Their youth is confirmed by the high level of chromospheric activity, comparable to that displayed by the early G-type stars in the Pleiades cluster. The flux ratio of the CaII-IRT lines suggests that the cores of these lines are mainly formed in optically-thick regions analogous to solar plages. The model of the light curves requires at least seven enduring spots for KIC 7985370 and nine spots for KIC 7765135 for a satisfactory fit. The assumption of longevity of the star spots, whose area is allowed to evolve in time, is at the heart of our approach. We found, for both stars, a rather high value of the equator-to-pole differential rotation (dOmega~0.18 rad/day) which is in contrast with the predictions of some mean-field models of differential rotation for fast-rotating stars. Our results are instead in agreement with previous works on solar-type stars and with other models which predict a higher latitudinal shear, increasing with equatorial angular velocity.
299 - M. McLean , 2011
[Abridged] We present a new radio survey of about 100 late-M and L dwarfs undertaken with the VLA. The sample was chosen to explore the role of rotation in the radio activity of ultracool dwarfs. Combining the new sample with results from our previous studies and from the literature, we compile the largest sample to date of ultracool dwarfs with radio observations and measured rotation velocities (167 objects). In the spectral type range M0-M6 we find a radio activity-rotation relation, with saturation at log(L_rad/L_bol) 10^(-7.5) above vsini~5 km/s, similar to the relation in H-alpha and X-rays. However, at spectral types >M7 the ratio of radio to bolometric luminosity increases regardless of rotation velocity, and the scatter in radio luminosity increases. In particular, while the most rapid rotators (vsini>20 km/s) exhibit super-saturation in X-rays and H-alpha, this effect is not seen in the radio. We also find that ultracool dwarfs with vsini>20 km/s have a higher radio detection fraction by about a factor of 3 compared to objects with vsini<10 km/s. When measured in terms of the Rossby number (Ro), the radio activity-rotation relation follows a single trend and with no apparent saturation from G to L dwarfs and down to Ro~10^-3; in X-rays and H-alpha there is clear saturation at Ro<0.1, with super-saturation beyond M7. A similar trend is observed for the radio surface flux (L_rad/R^2) as a function of Ro. The continued role of rotation in the overall level of radio activity and in the fraction of active sources, and the single trend of L_rad/L_bol and L_rad/R^2 as a function of Ro from G to L dwarfs indicates that rotation effects are important in regulating the topology or strength of magnetic fields in at least some fully-convective dwarfs. The fact that not all rapid rotators are detected in the radio provides additional support to the idea of dual dynamo states.
289 - A. Frasca 2011
We present a spectroscopic/photometric analysis of the rapid rotator KIC8429280, discovered by ourselves as a very young star and observed by the Kepler mission. We use spectroscopic/photometric ground-based data to derive stellar parameters, and we adopt a spectral subtraction technique to highlight the chromospheric emission in the cores of Halpha, CaII H&K and IRT lines. We fit a robust spot model to the high-precision Kepler photometry spanning 138 days. Model selection and parameter estimation is performed in a Bayesian manner using a Markov chain Monte Carlo method. We find that KIC8429280 is a cool (K2V) star with an age of ~50 Myr, based on its Li content, that has passed its T Tau phase and is spinning up approaching the ZAMS. Its high level of chromospheric activity is indicated by the radiative losses in CaII H&K and IRT, Halpha, and Hbeta lines. Furthermore, its Balmer decrement and the flux ratio of CaII IRT lines imply that these lines are mainly formed in optically-thick sources analogue to solar plages. The analysis of the Kepler data uncovers evidence of at least 7 enduring spots. Since the stars inclination is rather high, ~70{deg}, the assignment of the spots to the northern/southern hemisphere is not unambiguous. We find at least 3 solutions with nearly the same level of residuals. The distribution of the active regions is such that the spots are located around 3 latitude belts, i.e. the equator and +-(50{deg}-60{deg}), with the high-latitude spots rotating slower than the low-latitude ones. The equator-to-pole differential rotation ~0.27 rad/d is at variance with some recent mean-field models of differential rotation in rapidly rotating MS stars, which predict a much smaller latitudinal shear. Our results are consistent with the scenario of a higher differential rotation, which changes along the magnetic cycle.
Over the past 40 years, observational surveys have established the existence of a tight relationship between a stars age, rotation period, and magnetic activity. This age-rotation-activity relation documents the interplay between a stars magnetic dynamo and angular momentum evolution, and provides a valuable age estimator for isolated field stars. While the age-rotation-activity relation has been studied extensively in clusters younger than 500 Myr, empirically measured rotation periods are scarce for older ages. Using the Palomar Transient Factory (PTF), we have begun a survey of stellar rotation to map out the late-stage evolution of the age-rotation-activity relation: the Columbia/Cornell/Caltech PTF (CCCP) survey of open clusters. The first CCCP target is the nearby ~600 Myr Hyades-analog Praesepe, where PTF has produced light curves spanning more than 3 months and containing >150 measurements for ~650 cluster members. Analyzing these light curves, we have measured rotation periods for 40 K & M cluster members, filling the gap between the periods previously reported for solar-type Hyads (Radick et al. 1987, Prosser et al. 1995) and for a handful of low-mass Praesepe members (Scholz et al. 2007). Our measurements indicate that Praesepes period-color relation undergoes at transition at a characteristic spectral type of ~M1 --- from a well-defined singular relation at higher mass, to a more scattered distribution of both fast and slow-rotators at lower masses. The location of this transition is broadly consistent with expectations based on observations of younger clusters and the assumption that stellar-spin down is the dominant mechanism influencing angular momentum evolution at ~600 Myr. In addition to presenting the results of our photometric monitoring of Praesepe, we summarize the status and future of the CCCP survey.
We study a sample of 21 young and active solar-type stars with spectral types ranging from late F to mid K and characterize the behaviour of their activity. We apply the continuous period search (CPS) time series analysis method on 16 to 27 years of photometry to estimate the surface differential rotation and determine the existence and behaviour of active longitudes and activity cycles on the stars. We supplement the time series results by calculating new $log{R_{rm HK}}$ emission indices for the stars from high resolution spectroscopy. The photometric rotation period variations reveal a positive correlation between the relative differential rotation coefficient and the rotation period, but do not reveal any dependence of the differential rotation on the effective temperature of the stars. Secondary period searches reveal activity cycles in 18 of the stars and temporary or persistent active longitudes in 11 of them. The activity cycles fall into specific activity branches. We find a new split into sub-branches, indicating multiple simultaneously present cycle modes. Active longitudes appear to be present only on the more active stars. There is a sharp break at approximately $log{R_{rm HK}}=-4.46$ separating the less active stars with long-term axisymmetric spot distributions from the more active ones with non-axisymmetric configurations. In seven out of eleven of our stars with clearly detected long-term non-axisymmetric spot activity the estimated active longitude periods are significantly shorter than the mean photometric rotation periods. This systematic trend can be interpreted either as a sign of the active longitudes being sustained from a deeper level in the stellar interior than the individual spots or as azimuthal dynamo waves exhibiting prograde propagation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا