Do you want to publish a course? Click here

Extragalactic Background Light: Measurements and Applications

77   0   0.0 ( 0 )
 Added by Asantha R. Cooray
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

This review covers the measurements related to the extragalactic background light (EBL) intensity from gamma-rays to radio in the electromagnetic spectrum over 20 decades in the wavelength. The cosmic microwave background (CMB) remains the best measured spectrum with an accuracy better than 1%. The measurements related to the cosmic optical background (COB), centered at 1 microns, are impacted by the large zodiacal light associated with interplanetary dust in the inner Solar system. The best measurements of COB come from an indirect technique involving Gamma-ray spectra of bright blazars with an absorption feature resulting from pair-production off of COB photons. The cosmic infrared background (CIB) peaking at around 100 microns established an energetically important background with an intensity comparable to the optical background. This discovery paved the path for large aperture far-infrared and sub-millimeter observations resulting in the discovery of dusty, starbursting galaxies. Their role in galaxy formation and evolution remains an active area of research in modern-day astrophysics. The extreme UV background remains mostly unexplored and will be a challenge to measure due to the high Galactic background and absorption of extragalactic photons by the intergalactic medium at these EUV/soft X-ray energies. We also summarize our understanding of the spatial anisotropies and angular power spectra of intensity fluctuations. We motivate a precise direct measurement of the COB between 0.1 to 5 microns using a small aperture telescope observing either from the outer Solar system, at distances of 5 AU or more, or out of the ecliptic plane. Other future applications include improving our understanding of the background at TeV energies and spectral distortions of CMB and CIB.

rate research

Read More

Data from (non-) attenuation of gamma rays from active galactic nuclei (AGN) and gamma ray bursts (GRBs) give upper limits on the extragalactic background light (EBL) from the UV to the mid-IR that are only a little above the lower limits from observed galaxies. These upper limits now rule out some EBL models and purported observations, with improved data likely to provide even stronger constraints. We present EBL calculations both based on multiwavelength observations of thousands of galaxies and also based on semi-analytic models, and show that they are consistent with these lower limits from observed galaxies and with the gamma-ray upper limit constraints. Such comparisons close the loop on cosmological galaxy formation models, since they account for all the light, including that from galaxies too faint to see. We compare our results with those of other recent works, and discuss the implications of these new EBL calculations for gamma ray attenuation. Catching a few GRBs with groundbased atmospheric Cherenkov Telescope (ACT) arrays or water Cherenkov detectors could provide important new constraints on the high-redshift star formation history of the universe.
(Brief Summary) What is the total radiative content of the Universe since the epoch of recombination? The extragalactic background light (EBL) spectrum captures the redshifted energy released from the first stellar objects, protogalaxies, and galaxies throughout cosmic history. Yet, we have not determined the brightness of the extragalactic sky from UV/optical to far-infrared wavelengths with sufficient accuracy to establish the radiative content of the Universe to better than an order of magnitude. Among many science topics, an accurate measurement of the EBL spectrum from optical to far-IR wavelengths, will address: What is the total energy released by stellar nucleosynthesis over cosmic history? Was significant energy released by non-stellar processes? Is there a diffuse component to the EBL anywhere from optical to sub-millimeter? When did first stars appear and how luminous was the reionization epoch? Absolute optical to mid-IR EBL spectrum to an astrophysically interesting accuracy can be established by wide field imagingat a distance of 5 AU or above the ecliptic plane where the zodiacal foreground is reduced by more than two orders of magnitude.
The extragalactic background light (EBL) is comprised of the cumulative radiation from all galaxies and active galactic nuclei over the cosmic history. In addition to point sources, EBL also contains information from diffuse sources of radiation. The angular power spectra of the near-infrared intensities could contain additional signals and a complete understanding of the nature of the IR background is still lacking in the literature. Here we explore the constraints that can be placed on particle decays, especially candidate dark matter models involving axions that trace dark matter halos of galaxies. Axions with a mass around a few eV will decay via two photons with wavelengths in the near-IR band, and will leave a signature in the IR background intensity power spectrum. Using recent power spectra measurements from the Hubble Space Telescope (HST) and Cosmic Infrared Background Experiment (CIBER), we find that the 0.6 to 1.6 micron power spectra can be explained by axions with masses around 4 eV. The total axion abundance Omega_a~0.05, and it is comparable to the baryon density of the Universe. The suggested mean axion mass and abundance are not ruled out by existing cosmological observations. Interestingly, the axion model with a mass distribution is preferred by the data, which cannot be explained by the standard quantum chromodynamics (QCD) theory and needs further discussion.
The Cosmic Infrared Background ExpeRiment (CIBER) is a rocket-borne absolute photometry imaging and spectroscopy experiment optimized to detect signatures of first-light galaxies present during reionization in the unresolved IR background. CIBER-I consists of a wide-field two-color camera for fluctuation measurements, a low-resolution absolute spectrometer for absolute EBL measurements, and a narrow-band imaging spectrometer to measure and correct scattered emission from the foreground zodiacal cloud. CIBER-I was successfully flown on February 25th, 2009 and has one more planned flight in early 2010. We propose, after several additional flights of CIBER-I, an improved CIBER-II camera consisting of a wide-field 30 cm imager operating in 4 bands between 0.5 and 2.1 microns. It is designed for a high significance detection of unresolved IR background fluctuations at the minimum level necessary for reionization. With a FOV 50 to 2000 times largerthan existing IR instruments on satellites, CIBER-II will carry out the definitive study to establish the surface density of sources responsible for reionization.
88 - A. Dominguez 2010
The extragalactic background light (EBL) is of fundamental importance both for understanding the entire process of galaxy evolution and for gamma-ray astronomy, but the overall spectrum of the EBL between 0.1-1000 microns has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frame K-band galaxy luminosity function up to redshift 4 (Cirasuolo et al. 2010), combined with a determination of galaxy SED-type fractions. These are based on fitting SWIRE templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and AGN galaxies in that redshift range are estimated, and two alternative extrapolations of SED-types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the UV to the IR, the evolving star formation rate density of the universe, the evolving contribution to the bolometric EBL from the different galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, from another observationally-based model and observational data. The EBL uncertainties in our modeling based directly on the data are quantified, and their consequences for attenuation of very high energy gamma-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from infrared and gamma-ray astronomy are needed in order to reduce the uncertainties in the far-IR.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا