On the precision of a data-driven estimate of hadronic light-by-light scattering in the muon g-2: pseudoscalar-pole contribution


Abstract in English

The evaluation of the numerically dominant pseudoscalar-pole contribution to hadronic light-by-light scattering in the muon g-2 involves the pseudoscalar-photon transition form factor F_{P gamma^* gamma^*}(-Q_1^2, -Q_2^2) with P = pi^0, eta, eta^prime and, in general, two off-shell photons with spacelike momenta Q_{1,2}^2. We show, in a largely model-independent way, that for pi^0 (eta, eta^prime) the region of photon momenta below about 1 (1.5) GeV gives the main contribution to hadronic light-by-light scattering. We then discuss how the precision of current and future measurements of the single- and double-virtual transition form factor in different momentum regions impacts the precision of a data-driven estimate of this contribution to hadronic light-by-light scattering. Based on Monte Carlo simulations for a planned first measurement of the double-virtual form factor at BESIII, we find that for the pi^0, eta, eta^prime-pole contributions a precision of 14%, 23%, 15% seems feasible. Further improvements can be expected from other experimental data and also from the use of dispersion relations for the different form factors themselves.

Download