No Arabic abstract
The main result of this paper is a generalization of the classical blossom algorithm for finding perfect matchings. Our algorithm can efficiently solve Boolean CSPs where each variable appears in exactly two constraints (we call it edge CSP) and all constraints are even $Delta$-matroid relations (represented by lists of tuples). As a consequence of this, we settle the complexity classification of planar Boolean CSPs started by Dvorak and Kupec. Using a reduction to even $Delta$-matroids, we then extend the tractability result to larger classes of $Delta$-matroids that we call efficiently coverable. It properly includes classes that were known to be tractable before, namely co-independent, compact, local, linear and binary, with the following caveat: we represent $Delta$-matroids by lists of tuples, while the last two use a representation by matrices. Since an $ntimes n$ matrix can represent exponentially many tuples, our tractability result is not strictly stronger than the known algorithm for linear and binary $Delta$-matroids.
Promise Constraint Satisfaction Problems (PCSPs) are a generalization of Constraint Satisfaction Problems (CSPs) where each predicate has a strong and a weak form and given a CSP instance, the objective is to distinguish if the strong form can be satisfied vs. even the weak form cannot be satisfied. Since their formal introduction by Austrin, Guruswami, and Haa stad, there has been a flurry of works on PCSPs [BBKO19,KO19,WZ20]. The key tool in studying PCSPs is the algebraic framework developed in the context of CSPs where the closure properties of the satisfying solutions known as the polymorphisms are analyzed. The polymorphisms of PCSPs are much richer than CSPs. In the Boolean case, we still do not know if dichotomy for PCSPs exists analogous to Schaefers dichotomy result for CSPs. In this paper, we study a special case of Boolean PCSPs, namely Boolean Ordered PCSPs where the Boolean PCSPs have the predicate $x leq y$. In the algebraic framework, this is the special case of Boolean PCSPs when the polymorphisms are monotone functions. We prove that Boolean Ordered PCSPs exhibit a computational dichotomy assuming the Rich 2-to-1 Conjecture [BKM21] which is a perfect completeness surrogate of the Unique Games Conjecture. Assuming the Rich 2-to-1 Conjecture, we prove that a Boolean Ordered PCSP can be solved in polynomial time if for every $epsilon>0$, it has polymorphisms where each coordinate has Shapley value at most $epsilon$, else it is NP-hard. The algorithmic part of our dichotomy is based on a structural lemma that Boolean monotone functions with each coordinate having low Shapley value have arbitrarily large threshold functions as minors. The hardness part proceeds by showing that the Shapley value is consistent under a uniformly random 2-to-1 minor. Of independent interest, we show that the Shapley value can be inconsistent under an adversarial 2-to-1 minor.
We give an efficient algorithm to strongly refute emph{semi-random} instances of all Boolean constraint satisfaction problems. The number of constraints required by our algorithm matches (up to polylogarithmic factors) the best-known bounds for efficient refutation of fully random instances. Our main technical contribution is an algorithm to strongly refute semi-random instances of the Boolean $k$-XOR problem on $n$ variables that have $widetilde{O}(n^{k/2})$ constraints. (In a semi-random $k$-XOR instance, the equations can be arbitrary and only the right-hand sides are random.) One of our key insights is to identify a simple combinatorial property of random XOR instances that makes spectral refutation work. Our approach involves taking an instance that does not satisfy this property (i.e., is emph{not} pseudorandom) and reducing it to a partitioned collection of $2$-XOR instances. We analyze these subinstances using a carefully chosen quadratic form as a proxy, which in turn is bounded via a combination of spectral methods and semidefinite programming. The analysis of our spectral bounds relies only on an off-the-shelf matrix Bernstein inequality. Even for the purely random case, this leads to a shorter proof compared to the ones in the literature that rely on problem-specific trace-moment computations.
A Boolean constraint satisfaction problem (CSP), Max-CSP$(f)$, is a maximization problem specified by a constraint $f:{-1,1}^kto{0,1}$. An instance of the problem consists of $m$ constraint applications on $n$ Boolean variables, where each constraint application applies the constraint to $k$ literals chosen from the $n$ variables and their negations. The goal is to compute the maximum number of constraints that can be satisfied by a Boolean assignment to the $n$~variables. In the $(gamma,beta)$-approximation version of the problem for parameters $gamma geq beta in [0,1]$, the goal is to distinguish instances where at least $gamma$ fraction of the constraints can be satisfied from instances where at most $beta$ fraction of the constraints can be satisfied. In this work we consider the approximability of Max-CSP$(f)$ in the (dynamic) streaming setting, where constraints are inserted (and may also be deleted in the dynamic setting) one at a time. We completely characterize the approximability of all Boolean CSPs in the dynamic streaming setting. Specifically, given $f$, $gamma$ and $beta$ we show that either (1) the $(gamma,beta)$-approximation version of Max-CSP$(f)$ has a probabilistic dynamic streaming algorithm using $O(log n)$ space, or (2) for every $varepsilon > 0$ the $(gamma-varepsilon,beta+varepsilon)$-approximation version of Max-CSP$(f)$ requires $Omega(sqrt{n})$ space for probabilistic dynamic streaming algorithms. We also extend previously known results in the insertion-only setting to a wide variety of cases, and in particular the case of $k=2$ where we get a dichotomy and the case when the satisfying assignments of $f$ support a distribution on ${-1,1}^k$ with uniform marginals.
We study Boolean circuits as a representation of Boolean functions and consider different equivalence, audit, and enumeration problems. For a number of restricted sets of gate types (bases) we obtain efficient algorithms, while for all other gate types we show these problems are at least NP-hard.
Block sensitivity ($bs(f)$), certificate complexity ($C(f)$) and fractional certificate complexity ($C^*(f)$) are three fundamental combinatorial measures of complexity of a boolean function $f$. It has long been known that $bs(f) leq C^{ast}(f) leq C(f) =O(bs(f)^2)$. We provide an infinite family of examples for which $C(f)$ grows quadratically in $C^{ast}(f)$ (and also $bs(f)$) giving optimal separations between these measures. Previously the biggest separation known was $C(f)=C^{ast}(f)^{log_{4.5}5}$. We also give a family of examples for which $C^{ast}(f)=Omega(bs(f)^{3/2})$. These examples are obtained by composing boolean functions in various ways. Here the composition $f circ g$ of $f$ with $g$ is obtained by substituting for each variable of $f$ a copy of $g$ on disjoint sets of variables. To construct and analyse these examples we systematically investigate the behaviour under function composition of these measures and also the sensitivity measure $s(f)$. The measures $s(f)$, $C(f)$ and $C^{ast}(f)$ behave nicely under composition: they are submultiplicative (where measure $m$ is submultiplicative if $m(f circ g) leq m(f)m(g)$) with equality holding under some fairly general conditions. The measure $bs(f)$ is qualitatively different: it is not submultiplicative. This qualitative difference was not noticed in the previous literature and we correct some errors that appeared in previous papers. We define the composition limit of a measure $m$ at function $f$, $m^{lim}(f)$ to be the limit as $k$ grows of $m(f^{(k)})^{1/k}$, where $f^{(k)}$ is the iterated composition of $f$ with itself $k$-times. For any function $f$ we show that $bs^{lim}(f) = (C^*)^{lim}(f)$ and characterize $s^{lim}(f), (C^*)^{lim}(f)$, and $C^{lim}(f)$ in terms of the largest eigenvalue of a certain set of $2times 2$ matrices associated with $f$.