Do you want to publish a course? Click here

Jet-Intracluster Medium interaction in Hydra A. II The Effect of Jet Precession

71   0   0.0 ( 0 )
 Added by Mohammad Ali Nawaz
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present three dimensional relativistic hydrodynamical simulations of a precessing jet interacting with the intracluster medium and compare the simulated jet structure with the observed structure of the Hydra A northern jet. For the simulations, we use jet parameters obtained in the parameter space study of the first paper in this series and probe different values for the precession period and precession angle. We find that for a precession period P = 1 Myr and a precession angle = 20 degree the model reproduces i) the curvature of the jet, ii) the correct number of bright knots within 20 kpc at approximately correct locations, and iii) the turbulent transition of the jet to a plume. The Mach number of the advancing bow shock = 1.85 is indicative of gentle cluster atmosphere heating during the early stages of the AGNs activity.



rate research

Read More

We present the first stage of an investigation of the interactions of the jets in the radio galaxy Hydra A with the intracluster medium. We consider the jet kinetic power, the galaxy and cluster atmosphere, and the inner structure of the radio source. Analysing radio observations of the inner lobes of Hydra A by Taylor et al. (1990) we confirm the jet power estimates of about 1e45 ergs/s derived by Wise et al. (2007) from dynamical analysis of the X-ray cavities. With this result and a model for the galaxy halo, we explore the jet-intracluster medium interactions occurring on a scale of 10 kpc using two-dimensional, axisymmetric, relativistic pure hydrodynamic simulations. A key feature is that we identify the three bright knots in the northern jet as biconical reconfinement shocks, which result when an over pressured jet starts to come into equilibrium with the galactic atmosphere. Through an extensive parameter space study we deduce that the jet velocity is approximately 0.8 c at a distance 0.5 kpc from the black hole. The combined constraints of jet power, the observed jet radius profile along the jet, and the estimated jet pressure and jet velocity imply a value of the jet density parameter approximately 13 for the northern jet. We show that for a jet velocity = 0.8c and angle between the jet and the line of sight = 42 deg, an intrinsic asymmetry in the emissivity of the northern and southern jet is required for a consistent brightness ratio approximately 7 estimated from the 6cm VLA image of Hydra A.
Various radio galaxies show signs of having gone through episodic jet outbursts in the past. An example is the class of double-double radio galaxies (DDRGs). However, to follow the evolution of an individual source in real-time is impossible due to the large time scales involved. Numerical studies provide a powerful tool to investigate the temporal behavior of episodic jet outbursts in a (magneto-)hydrodynamical setting. We simulate the injection of two jets from active galactic nuclei (AGN), separated by a short interruption time. Three different jet models are compared. We find that an AGN jet outburst cycle can be divided into four phases. The most prominent phase occurs when the restarted jet is propagating completely inside the hot and inflated cocoon left behind by the initial jet. In that case, the jet-head advance speed of the restarted jet is significantly higher than the initial jet-head. While the head of the initial jet interacts strongly with the ambient medium, the restarted jet propagates almost unimpeded. As a result, the restarted jet maintains a strong radial integrity. Just a very small fraction of the amount of shocked jet material flows back through the cocoon compared to that of the initial jet and much weaker shocks are found at the head of the restarted jet. We find that the features of the restarted jet in this phase closely resemble the observed properties of a typical DDRG.
69 - P. E. J. Nulsen 2001
The radio lobes of Hydra A lie within cavities surrounded by a rim of enhanced X-ray emission in the intracluster gas. Although the bright rim appears cooler than the surrounding gas, existing Chandra data do not exclude the possibility that the rim is produced by a weak shock. A temperature map shows that cool gas extends out along the radio axis of Hydra A. The age of the radio source and equipartition pressure of the radio lobe argue against a shock, and comparison with similar structure in the Perseus Cluster also suggests that the rim is cool. We show that the cool bright rim cannot be the result of shock induced cooling, or due to the effect of magnetic fields in shocks. The most likely source of low entropy (cool) gas is entrainment by the rising cavity. This requires some means of communicating the bouyant force on the cavity to the surrounding gas. The magnetic field required to produce the Faraday rotation in Hydra A has the appropriate properties for this, if the Faraday screen is mainly in this bright rim. In Hydra A, the mass outflow due to the rising cavities could be sufficient to balance cooling driven inflow, so preventing the build up of low entropy gas in the cluster core.
A key characteristic of many active galactic nuclei (AGN) is their variability, but its origin is poorly understood, especially in the radio domain. Williams et al. (2017) reported a ~50 per cent increase in peak flux density of the AGN in the Seyfert galaxy NGC 4151 at 1.5 GHz with the e-MERLIN array. We present new high resolution e-MERLIN observations at 5 GHz and compare these to archival MERLIN observations to investigate the reported variability. Our new observations allow us to probe the nuclear region at a factor three times higher-resolution than the previous e-MERLIN study. We separate the core component, C4, into three separate components: C4W, C4E and X. The AGN is thought to reside in component C4W, but this component has remained constant between epochs within uncertainties. However, we find that the Eastern-most component, C4E, has increased in peak flux density from 19.35$pm$1.10 to 37.09$pm$1.86 mJy/beam, representing a 8.2 sigma increase on the MERLIN observations. We attribute this peak flux density increase to continued interaction between the jet and the emission line region (ELR), observed for the first time in a low-luminosity AGN such as NGC 4151. We identify discrete resolved components at 5 GHz along the jet axis, which we interpret as areas of jet-ELR interaction.
300 - W. P. Yao , B. Qiao , Z. Xu 2018
The composition of the astrophysical relativistic jets remains uncertain. By kinetic particle-in-cell simulations, we show that the baryon component in the jet, or the so-called baryon loading effect (BLE), heavily affects relativistic jets transport dynamics in the interstellar medium. On the one hand, with the BLE, relativistic jets can transport in a much longer distance, because jet electrons draw a significant amount of energy from jet baryons via the Buneman-induced electrostatic waves and the Weibel-mediated collisionless shock; on the other hand, the jet electron phase space distribution may transform from a bottom-wide-single-peak structure to a center-wide-multiple-peak one by increasing the BLE, which largely influences the observed jet morphology. Implications for related astrophysical studies are also discussed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا