No Arabic abstract
The spectral position of the 3.6 micron continuum peak measured on Cassini-VIMS I/F spectra is used as a marker to infer the temperature of the regolith particles covering the surfaces of Saturns icy satellites. This feature is characterizing the crystalline water ice spectrum which is the dominant compositional endmember of the satellites surfaces. Laboratory measurements indicate that the position of the 3.6 micron peak of pure water ice is temperature-dependent, shifting towards shorter wavelengths when the sample is cooled, from about 3.65 micron at T=123 K to about 3.55 micron at T=88 K. A similar method was already applied to VIMS Saturns rings mosaics to retrieve ring particles temperature (Filacchione et al., 2014). We report here about the daytime temperature variations observed on the icy satellites as derived from three different VIMS observation types. Temperature maps are built by mining the complete VIMS dataset collected in years 2004-2009 (pre-equinox) and in 2009-2012 (post equinox) by selecting pixels with max 150 km/pixel resolution. VIMS-derived temperature maps allow to identify thermal anomalies across the equatorial lens of Mimas and Tethys.
In the last few years Cassini-VIMS, the Visible and Infared Mapping Spectrometer, returned to us a comprehensive view of the Saturns icy satellites and rings. After having analyzed the satellites spectral properties (Filacchione et al. (2007a)) and their distribution across the satellites hemispheres (Filacchione et al. (2010)), we proceed in this paper to investigate the radial variability of icy satellites (principal and minor) and main rings average spectral properties. This analysis is done by using 2,264 disk-integrated observations of the satellites and a 12x700 pixels-wide rings radial mosaic acquired with a spatial resolution of about 125 km/pixel. The comparative analysis of these data allows us to retrieve the amount of both water ice and red contaminant materials distributed across Saturns system and the typical surface regolith grain sizes. These measurements highlight very striking differences in the population here analyzed, which vary from the almost uncontaminated and water ice-rich surfaces of Enceladus and Calypso to the metal/organic-rich and red surfaces of Iapetus leading hemisphere and Phoebe. Rings spectra appear more red than the icy satellites in the visible range but show more intense 1.5-2.0 micron band depths. The correlations among spectral slopes, band depths, visual albedo and phase permit us to cluster the saturnian population in different spectral classes which are detected not only among the principal satellites and rings but among co-orbital minor moons as well. Finally, we have applied Hapkes theory to retrieve the best spectral fits to Saturns inner regular satellites using the same methodology applied previously for Rhea data discussed in Ciarniello et al. (2011).
Saturns main rings exhibit variations in both their opacity and spectral properties on a broad range of spatial scales, and the correlations between these parameters can provide insights into the processes that shape the composition and dynamics of the rings. The Visual and Infrared Mapping Spectrometer (VIMS) instrument onboard the Cassini Spacecraft has obtained spectra of the rings between 0.35 and 5.2 microns with sufficient spatial resolution to discern variations on scales below 200 km. These relatively high-resolution spectral data reveal that both the depths of the near-infrared water-ice absorption bands and the visible spectral slopes are often correlated with structural parameters such as the rings optical depth. Using a simplified model for the ring-particles regolith properties, we have begun to disentangle the trends due to changes in the gross composition of the ring particles from those that may be due to shifts in the texture of the ring particles regolith. Consistent with previous studies, this analysis finds that the C ring and the Cassini Division possess enhanced concentrations of a contaminant that absorbs light over a broad range of wavelengths. On the other hand, a second contaminant that preferentially absorbs at short visible and near-ultraviolet wavelengths is found to be more evenly distributed throughout the rings. The optical activity of this short-wavelength absorber increases in the inner B ring inwards of 100,000 km from Saturn center, which may provide clues to the origin of this contaminant. The spectral variations identified as shifts in the regolith texture are in some places clearly correlated with the rings optical depth, and in other locations they appear to be associated with the disturbances generated by strong mean-motion resonances with Saturns various moons.
We used 0.85 - 5.1 micron 2006 observations by Cassinis Visual and Infrared Mapping Spectrometer (VIMS) to constrain the unusual vertical structure and compositions of cloud layers in Saturns south polar region, the site of a powerful vortex circulation, shadow-casting cloud bands, and spectral evidence of ammonia ice clouds without the lightning usually associated with such features. We modeled spectral observations with a 4-layer model that includes (1) a stratospheric haze, (2) a top tropospheric layer of non-absorbing (possibly diphosphine) particles near 300 mbar, with a fraction of an optical depth (much less than found elsewhere on Saturn), (3) a moderately thicker layer (1 - 2 optical depths) of ammonia ice particles near 900 mbar, and (4) extending from 5 bars up to 2-4 bars, an assumed optically thick layer where NH4SH and H20 are likely condensables. What makes the 3-micron absorption of ammonia ice unexpectedly apparent in these polar clouds, is not penetrating convection, but instead the relatively low optical depth of the top tropospheric cloud layer, perhaps because of polar downwelling and/or lower photochemical production rates. We did not find any evidence for optically thick eyewalls that were previously thought to be responsible for the observed shadows. Instead, we found evidence for small step-wise decreases in optical depth of the stratospheric haze near 87.9 deg S and in the putative diphosphine layer near 88.9 deg S, which are the likely causes of shadows and bright features we call antishadows. We found changes as a function of latitude in the phosphine vertical profile and in the arsine mixing ratio that support the existence of downwelling within 2 deg of the pole.
A new model for the shape of the prominent eccentric ringlet in the gap exterior to Saturns B-ring is developed based on Cassini imaging observations taken over about 8 years. Unlike previous treatments, the new model treats each edge of the ringlet separately. The Keplerian component of the model is consistent with results derived from Voyager observations, and $m=2$ modes forced by the nearby Mimas 2:1 Lindblad resonance are seen. Additionally, a free $m=2$ mode is seen on the outer edge of the ringlet. Significant irregular structure that cannot be described using normal-mode analysis is seen on the ringlet edges as well. Particularly on the inner edge, that structure remains coherent over multi-year intervals, moving at the local Keplerian rate. We interpret the irregular structure as the signature of embedded massive bodies. The long coherence time suggests the responsible bodies are concentrated near the edge of the ringlet. Long wake-like structures originate from two locations on the inner edge of the ringlet, revealing the locations of the two most massive embedded bodies in that region. As with the Voyager observations, the Cassini data sets showed no correlation between the width and the radius of the ringlet as would be expected for a self-gravitating configuration, except for a brief interval during late 2006, when the width-radius relation was similar to those seen in most other narrow eccentric ringlets in the Solar System.
We present numerically-derived orbits and mass estimates for the inner Saturnian satellites, Atlas, Prometheus, Pandora, Janus and Epimetheus from a fit to 2580 new Cassini ISS astrometric observations spanning February 2004 to August 2013. The observations are provided in a supplementary table. We estimate GM_ Atlas=0.384+/-0.001 x 10^(-3)km^3s^(-2), a value 13% smaller than the previously published estimate but with an order of magnitude reduction in the uncertainty. We also find GM_ Prometheus=10.677+/-0.006x10(-3)km^3s^(-2), GM_Pandora=9.133+/-0.009x10^(-3)km^3s^(-2), GM_Janus=126.51+/-0.03x10^(-3)km^3s^(-2) and GM_Epimetheus=35.110+/-0.009x10^(-3)km^3s^(-2), consistent with previously published values, but also with significant reductions in uncertainties. We show that Atlas is currently librating in both the 54:53 co-rotation-eccentricity resonance (CER) and the 54:53 inner Lindblad (ILR) resonance with Prometheus, making it the latest example of a coupled CER-ILR system, in common with the Saturnian satellites Anthe, Aegaeon and Methone, and possibly Neptunes ring arcs. We further demonstrate that Atlass orbit is chaotic, with a Lyapunov time of ~10 years, and show that its chaotic behaviour is a direct consequence of the coupled resonant interaction with Prometheus, rather than being an indirect effect of the known chaotic interaction between Prometheus and Pandora. We provide an updated analysis of the second-order resonant perturbations involving Prometheus, Pandora and Epimetheus based on the new observations, showing that these resonant arguments are librating only when Epimetheus is the innermost of the co-orbital pair, Janus and Epimetheus. We also find evidence that the known chaotic changes in the orbits of Prometheus and Pandora are not confined to times of apse anti-alignement.