A Uniform Catalog of Molecular Clouds in the Milky Way


Abstract in English

The all-Galaxy CO survey of Dame, Hartmann, & Thaddeus (2001) is by far the most uniform, large-scale Galactic CO survey. Using a dendrogram-based decomposition of this survey, we present a catalog of 1064 massive molecular clouds throughout the Galactic plane. This catalog contains $2.5 times 10^8$ solar masses, or $25^{+10.7}_{-5.8} %$ of the Milky Ways estimated H$_2$ mass. We track clouds in some spiral arms through multiple quadrants. The power index of Larsons first law, the size-linewidth relation, is consistent with 0.5 in all regions - possibly due to an observational bias - but clouds in the inner Galaxy systematically have significantly (~ 30%) higher linewidths at a given size, indicating that their linewidths are set in part by Galactic environment. The mass functions of clouds in the inner Galaxy versus the outer Galaxy are both qualitatively and quantitatively distinct. The inner Galaxy mass spectrum is best described by a truncated power-law with a power index of $gamma=-1.6pm0.1$ and an upper truncation mass $M_0 = (1.0 pm 0.2) times 10^7 M_odot$, while the outer Galaxy mass spectrum is better described by a non-truncating power law with $gamma=-2.2pm0.1$ and an upper mass $M_0 = (1.5 pm 0.5) times 10^6 M_odot$, indicating that the inner Galaxy is able to form and host substantially more massive GMCs than the outer Galaxy. Additionally, we have simulated how the Milky Way would appear in CO from extragalactic perspectives, for comparison with CO maps of other galaxies.

Download