No Arabic abstract
Debate persists as to whether the cosmological constant $Lambda$ can directly modify the power of a gravitational lens. With the aim of reestablishing a consensus on this issue, I conduct a comprehensive analysis of gravitational lensing in the Schwarzschild--de Sitter spacetime, wherein the effects of $Lambda$ should be most apparent. The effective lensing law is found to be in precise agreement with the $Lambda=0$ result: $alpha_mathrm{eff} = 4m/b_mathrm{eff}+15pi m^2/4b_mathrm{eff}^2 +O(m^3/b_mathrm{eff}^3)$, where the effective bending angle $alpha_mathrm{eff}$ and impact parameter $b_mathrm{eff}$ are defined by the angles and angular diameter distances measured by a comoving cosmological observer. [These observers follow the timelike geodesic congruence which (i) respects the continuous symmetries of the spacetime and (ii) approaches local isotropy most rapidly at large distance from the lens.] The effective lensing law can be derived using lensed or unlensed angular diameter distances, although the inherent ambiguity of unlensed distances generates an additional uncertainty $O(m^5/Lambda b_mathrm{eff}^7)$. I conclude that the cosmological constant does not interfere with the standard gravitational lensing formalism.
We compute the quasinormal spectra for scalar, Dirac and electromagnetic perturbations of the Schwarzschild-de Sitter geometry in the framework of scale-dependent gravity, which is one of the current approaches to quantum gravity. Adopting the widely used WKB semi-classical approximation, we investigate the impact on the spectrum of the angular degree, the overtone number as well as the scale-dependent parameter for fixed black hole mass and cosmological constant. We summarize our numerical results in tables, and for better visualization, we show them graphically as well. All modes are found to be stable. Our findings show that both the real part and the absolute value of the imaginary part of the frequencies increase with the parameter $epsilon$ that measures the deviation from the classical geometry. Therefore, in the framework of scale-dependent gravity the modes oscillate and decay faster in comparison with their classical counterparts.
In this work we study the Sorkin-Johnston (SJ) vacuum in de Sitter spacetime for free scalar field theory. For the massless theory we find that the SJ vacuum can neither be obtained from the $O(4)$ Fock vacuum of Allen and Folacci nor from the non-Fock de Sitter invariant vacuum of Kirsten and Garriga. Using a causal set discretisation of a slab of 2d and 4d de Sitter spacetime, we find the causal set SJ vacuum for a range of masses $m geq 0$ of the free scalar field. While our simulations are limited to a finite volume slab of global de Sitter spacetime, they show good convergence as the volume is increased. We find that the 4d causal set SJ vacuum shows a significant departure from the continuum Motolla-Allen $alpha$-vacua. Moreover, the causal set SJ vacuum is well-defined for both the minimally coupled massless $m=0$ and the conformally coupled massless $m=m_c$ cases. This is at odds with earlier work on the continuum de Sitter SJ vacuum where it was argued that the continuum SJ vacuum is ill-defined for these masses. Our results hint at an important tension between the discrete and continuum behaviour of the SJ vacuum in de Sitter and suggest that the former cannot in general be identified with the Mottola-Allen $alpha$-vacua even for $m>0$.
Using the analytic extension method, we study Hawking radiation of an $(n + 4)$-dimensional Schwarzschild-de Sitter black hole. Under the condition that the total energy is conserved, taking the reaction of the radiation of particles to the spacetime into consideration and considering the relation between the black hole event horizon and cosmological horizon, we obtain the radiation spectrum of de Sitter spacetime. This radiation spectrum is no longer a strictly pure thermal spectrum. It is related to the change of the Bekenstein-Hawking(B-H) entropy corresponding the black hole event horizon and cosmological horizon. The result satisfies the unitary principle. At the same time, we also testify that the entropy of de Sitter spacetime is the sum of the entropy of black hole event horizon and the one of cosmological horizon.
We study the behavior of the quasinormal modes (QNMs) of massless and massive linear waves on Schwarzschild-de Sitter black holes as the black hole mass tends to 0. Via uniform estimates for a degenerating family of ODEs, we show that in bounded subsets of the complex plane and for fixed angular momenta, the QNMs converge to those of the static model of de Sitter space. Detailed numerics illustrate our results and suggest a number of open problems.
We study the free massive scalar field in de Sitter spacetime with static charts. In particular, we find positive-frequency modes for the Bunch-Davies vacuum state natural to the static charts as superpositions of the well-known positive-frequency modes in the conformally-flat chart. We discuss in detail how these modes are defined globally in the two static charts and the region in their future. The global structure of these solutions leads to the well-known description of the Bunch-Davies vacuum state as an entangled state. Our results are expected to be useful not only for studying the thermal properties in the vacuum fluctuations in de Sitter spacetime but also for understanding the nonlocal properties of the vacuum state.