Do you want to publish a course? Click here

Experimental test of non-classicality of quantum mechanics using an individual atomic solid-state quantum system

414   0   0.0 ( 0 )
 Added by Jiangfeng Du
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for some realistic models with hidden variables. There are, however, two powerful theorems against the hidden-variable theories showing that certain quantum features cannot be reproduced based on two rationale premises of classicality, the Bell theorem, and noncontextuality, due to Bell, Kochen and Specker (BKS) . Tests of the Bell inequality and the BKS theorem are both of fundamental interests and of great significance . The Bell theorem has already been experimentally verified extensively on many different systems , while the quantum contextuality, which is independent of nonlocality and manifests itself even in a single object, is experimentally more demanding. Moreover, the contextuality has been shown to play a critical role to supply the `magic for quantum computation, making more extensive experimental verifications in potential systems for quantum computing even more stringent. Here we report an experimental verification of quantum contextuality on an individual atomic nuclear spin-1 system in solids under ambient condition. Such a three-level system is indivisible and thus the compatibility loophole, which exists in the experiments performed on bipartite systems, is closed. Our experimental results confirm that the quantum contextuality cannot be explained by nonlocal entanglement, revealing the fundamental quantumness other than locality/nonlocality within the intrinsic spin freedom of a concrete natural atomic solid-state system at room temperature.



rate research

Read More

241 - Xi Kong , Mingjun Shi , Fazhan Shi 2012
Quantum mechanics provides a statistical description about nature, and thus would be incomplete if its statistical predictions could not be accounted for by some realistic models with hidden variables. There are, however, two powerful theorems against the hidden-variable theories showing that certain quantum features cannot be reproduced based on two rationale premises of locality, Bells theorem, and noncontextuality, due to Bell, Kochen and Specker (BKS). Noncontextuality is independent of nonlocality, and the contextuality manifests itself even in a single object. Here we report an experimental verification of quantum contextuality by a single spin-1 electron system at room temperature. Such a three-level system is indivisible and then we close the compatibility loophole which exists in the experiments performed on bipartite systems. Our results confirm the quantum contextuality to be the intrinsic property of single particles.
316 - C. Zu , Y.-X. Wang , D.-L. Deng 2012
We report the first state-independent experimental test of quantum contextuality on a single photonic qutrit (three-dimensional system), based on a recent theoretical proposal [Yu and Oh, Phys. Rev. Lett. 108, 030402 (2012)]. Our experiment spotlights quantum contextuality in its most basic form, in a way that is independent of either the state or the tensor product structure of the system.
We argue that the experiment described in the recent Letter by Zu et al. [Phys. Rev. Lett. 109, 150401 (2012); arXiv:1207.0059v1] does not allow to make conclusions about contextuality, since the measurement of the observables as well as the preparation of the state manifestly depend on the chosen context.
We investigate signatures of non-classicality in quantum states, in particular, those involved in the DQC1 model of mixed-state quantum computation [Phys. Rev. Lett. 81, 5672 (1998)]. To do so, we consider two known non-classicality criteria. The first quantifies disturbance of a quantum state under locally noneffective unitary operations (LNU), which are local unitaries acting invariantly on a subsystem. The second quantifies measurement induced disturbance (MID) in the eigenbasis of the reduced density matrices. We study the role of both figures of non-classicality in the exponential speedup of the DQC1 model and compare them vis-a-vis the interpretation provided in terms of quantum discord. In particular, we prove that a non-zero quantum discord implies a non-zero shift under LNUs. We also use the MID measure to study the locking of classical correlations [Phys. Rev. Lett. 92, 067902 (2004)] using two mutually unbiased bases (MUB). We find the MID measure to exactly correspond to the number of locked bits of correlation. For three or more MUBs, it predicts the possibility of superior locking effects.
The origin of non-classicality in physical systems and its connection to distinctly quantum features such as entanglement and coherence is a central question in quantum physics. This work analyses this question theoretically and experimentally, linking quantitatively non-classicality with quantum coherence. On the theoretical front, we show when the coherence of an observable is linearly related to the degree of violation of the Kolmogorov condition, which quantifies the deviation from any classical (non-invasive) explanation of the multi-time statistics. Experimentally, we probe this connection between coherence and non-classicality in a time-multiplexed optical quantum walk. We demonstrate exquisite control of quantum coherence of the walker by varying the degree of coherent superposition effected by the coin, and we show a concomitant variation in the degree of non-classicality of the walker statistics, which can be accessed directly by virtue of the unprecedented control on the measurement-induced effects obtained via fast programmable electro-optic modulators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا