The Diffusion Geometry of Fibre Bundles: Horizontal Diffusion Maps


Abstract in English

Kernel-based non-linear dimensionality reduction methods, such as Local Linear Embedding (LLE) and Laplacian Eigenmaps, rely heavily upon pairwise distances or similarity scores, with which one can construct and study a weighted graph associated with the dataset. When each individual data object carries additional structural details, however, the correspondence relations between these structures provide extra information that can be leveraged for studying the dataset using the graph. Based on this observation, we generalize Diffusion Maps (DM) in manifold learning and introduce the framework of Horizontal Diffusion Maps (HDM). We model a dataset with pairwise structural correspondences as a fibre bundle equipped with a connection. We demonstrate the advantage of incorporating such additional information and study the asymptotic behavior of HDM on general fibre bundles. In a broader context, HDM reveals the sub-Riemannian structure of high-dimensional datasets, and provides a nonparametric learning framework for datasets with structural correspondences.

Download