No Arabic abstract
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.
We identify the chiral and angular momentum content of the leading quark-antiquark Fock component for the $rho(770)$ and $rho(1450)$ mesons using a two-flavor lattice simulation with dynamical Overlap Dirac fermions. We extract this information from the overlap factors of two interpolating fields with different chiral structure and from the unitary transformation between chiral and angular momentum basis. For the chiral content of the mesons we find that the $rho(770)$ slightly favors the $(1,0)oplus(0,1)$ chiral representation and the $rho(1450)$ slightly favors the $(1/2,1/2)_b$ chiral representation. In the angular momentum basis the $rho(770)$ is then a $^3S_1$ state, in accordance with the quark model. The $rho(1450)$ is a $^3D_1$ state, showing that the quark model wrongly assumes the $rho(1450)$ to be a radial excitation of the $rho(770)$.
The magnitude of the $U_A(1)$ symmetry breaking is expected to affect the nature of $N_f=2$ QCD chiral phase transition. The explicit breaking of chiral symmetry due to realistic light quark mass is small, so it is important to use chiral fermions on the lattice to understand the effect of $U_A(1)$ near the chiral crossover temperature, $T_c$. We report our latest results for the eigenvalue spectrum of 2+1 flavour QCD with dynamical Mobius domain wall fermions at finite temperature probed using the overlap operator on $32^3times 8$ lattice. We check how sensitive the low-lying eigenvalues are to the sea-light quark mass. We also present a comparison with the earlier independent results with domain wall fermions.
We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_tau = 8 and spatial extent N_sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial correlators in the scalar and pseudo-scalar channels, as well as the corresponding susceptibilities. Furthermore, we also show results for the eigenvalue spectrum of the Dirac operator as a function of temperature, which can be connected to both U(1)_A and chiral symmetry restoration via Banks-Casher relations.
We study a recently proposed formulation of overlap fermions at finite density. In particular we compute the energy density as a function of the chemical potential and the temperature. It is shown that overlap fermions with chemical potential reproduce the correct continuum behavior.
The variational method allows one to study the mixing of interpolators with different chiral transformation properties in the nonperturbatively determined physical state. It is then possible to define and calculate in a gauge-invariant manner the chiral as well as the partial wave content of the quark-antiquark component of a meson in the infrared, where mass is generated. Using a unitary transformation from the chiral basis to the $^{2S+1}L_J$ basis one may extract the partial wave content of a meson. We present results for the $rho$- and $rho$-mesons using a simulation with $N_f=2$ dynamical quarks, all for lattice spacings close to 0.15 fm. Our results indicate a strong chiral symmetry breaking in the $rho$ state and its simple $^3S_1$-wave composition in the infrared. For the $rho$-meson we find a small chiral symmetry breaking in the infrared as well as a leading contribution of the $^3D_1$ partial wave, which is contradictory to the quark model.