We show that the contact process on the rank-one inhomogeneous random graphs and Erdos-R{e}nyi graphs with mean degree large enough survives a time exponential in the size of these graphs for any positive infection rate. In addition, a metastable result for the extinction time is also proved.
We consider the extinction time of the contact process on increasing sequences of finite graphs obtained from a variety of random graph models. Under the assumption that the infection rate is above the critical value for the process on the integer line, in each case we prove that the logarithm of the extinction time divided by the size of the graph converges in probability to a (model-dependent) positive constant. The graphs we treat include various percolation models on increasing boxes of Z d or R d in their supercritical or percolative regimes (Bernoulli bond and site percolation, the occupied and vacant sets of random interlacements, excursion sets of the Gaussian free field, random geometric graphs) as well as supercritical Galton-Watson trees grown up to finite generations.
We consider the contact process on the model of hyperbolic random graph, in the regime when the degree distribution obeys a power law with exponent $chi in(1,2)$ (so that the degree distribution has finite mean and infinite second moment). We show that the probability of non-extinction as the rate of infection goes to zero decays as a power law with an exponent that only depends on $chi$ and which is the same as in the configuration model, suggesting some universality of this critical exponent. We also consider fini
A bootstrap percolation process on a graph G is an infection process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round every uninfected node which has at least r infected neighbours becomes infected and remains so forever. The parameter r > 1 is fixed. We consider this process in the case where the underlying graph is an inhomogeneous random graph whose kernel is of rank 1. Assuming that initially every vertex is infected independently with probability p > 0, we provide a law of large numbers for the number of vertices that will have been infected by the end of the process. We also focus on a special case of such random graphs which exhibit a power-law degree distribution with exponent in (2,3). The first two authors have shown the existence of a critical function a_c(n) such that a_c(n)=o(n) with the following property. Let n be the number of vertices of the underlying random graph and let a(n) be the number of the vertices that are initially infected. Assume that a set of a(n) vertices is chosen randomly and becomes externally infected. If a(n) << a_c(n), then the process does not evolve at all, with high probability as n grows, whereas if a(n)>> a_c(n), then with high probability the final set of infected vertices is linear. Using the techniques of the previous theorem, we give the precise asymptotic fraction of vertices which will be eventually infected when a(n) >> a_c (n) but a(n) = o(n). Note that this corresponds to the case where p approaches 0.
We introduce a method to prove metastability of the contact process on ErdH{o}s-Renyi graphs and on configuration model graphs. The method relies on uniformly bounding the total infection rate from below, over all sets with a fixed number of nodes. Once this bound is established, a simple comparison with a well chosen birth-and-death process will show the exponential growth of the extinction time. Our paper complements recent results on the metastability of the contact process: under a certain minimal edge density condition, we give explicit lower bounds on the infection rate needed to get metastability, and we have explicit exponentially growing lower bounds on the expected extinction time.
The key to our investigation is an improved (and in a sense sharp) understanding of the survival time of the contact process on star graphs. Using these results, we show that for the contact process on Galton-Watson trees, when the offspring distribution (i) is subexponential the critical value for local survival $lambda_2=0$ and (ii) when it is geometric($p$) we have $lambda_2 le C_p$, where the $C_p$ are much smaller than previous estimates. We also study the critical value $lambda_c(n)$ for prolonged persistence on graphs with $n$ vertices generated by the configuration model. In the case of power law and stretched exponential distributions where it is known $lambda_c(n) to 0$ we give estimates on the rate of convergence. Physicists tell us that $lambda_c(n) sim 1/Lambda(n)$ where $Lambda(n)$ is the maximum eigenvalue of the adjacency matrix. Our results show that this is not correct.